On fiber diameters of continuous maps

作者: Peter S. Landweber , Emanuel A. Lazar , Neel Patel

DOI: 10.4169/AMER.MATH.MONTHLY.123.4.392

关键词:

摘要: We present a surprisingly short proof that for any continuous map $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$, if $n>m$, then there exists no bound on the diameter of fibers $f$. Moreover, we show when $m=1$, union small $f$ is bounded; $m>1$, need not be bounded. Applications to data analysis are considered.

参考文章(6)
D. Burago, Y. Eliashberg, M. Bestvina, F. Forstnerič, L. Guth, A. Nabutovsky, A. Phillips, J. Roe, A. Vershik, A Few Snapshots from the Work of Mikhail Gromov Springer, Berlin, Heidelberg. pp. 139- 234 ,(2014) , 10.1007/978-3-642-39449-2_11
Karol Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre Fundamenta Mathematicae. ,vol. 20, pp. 177- 190 ,(1933) , 10.4064/FM-20-1-177-190
Emanuel A. Lazar, Jian Han, David J. Srolovitz, Topological framework for local structure analysis in condensed matter. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 201505788- ,(2015) , 10.1073/PNAS.1505788112
Danny Calegari, A degree one Borsuk-Ulam theorem Bulletin of The Australian Mathematical Society. ,vol. 61, pp. 267- 268 ,(2000) , 10.1017/S0004972700022267
Larry Guth, Metaphors in systolic geometry arXiv: Differential Geometry. ,(2010)
W. B. Johnson, Extensions of Lipschitz mappings into Hilbert space Contemporary mathematics. ,vol. 26, pp. 189- 206 ,(1984)