作者: Peter S. Landweber , Emanuel A. Lazar , Neel Patel
DOI: 10.4169/AMER.MATH.MONTHLY.123.4.392
关键词:
摘要: We present a surprisingly short proof that for any continuous map $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$, if $n>m$, then there exists no bound on the diameter of fibers $f$. Moreover, we show when $m=1$, union small $f$ is bounded; $m>1$, need not be bounded. Applications to data analysis are considered.