Multitasking the Householder Diagonalization Algorithm on the CRAY X-MP/48

作者: K. A. Berrington

DOI: 10.1007/978-1-4684-5820-6_13

关键词:

摘要: In a previous lecture (computational implementation of the R—matrix method in atomic and molecular collision problems) it was mentioned that an important part computation solving problems by techniques diagonalization internal-region Hamiltonian matrices. These matrices are usually real, symmetric dense (ii.e. non—sparse). All eigenvalues eigenvectors required to define R—matrix. can be various sizes, up order few thousand square.

参考文章(6)
A. R. Gourlay, G. A. Watson, Computational methods for matrix Eigenproblems ,(1973)
Herbert S. Wilf, Peter L. Balise, Anthony Ralston, Mathematical methods for digital computers ,(1960)
Alston S. Householder, Friedrich L. Bauer, On certain methods for expanding the characteristic polynomial Numerische Mathematik. ,vol. 1, pp. 29- 37 ,(1959) , 10.1007/BF01386370
K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan, A new version of the general program to calculate atomic continuum processes using the r-matrix method Computer Physics Communications. ,vol. 14, pp. 367- 412 ,(1984) , 10.1016/S0010-4655(84)82673-9
J. H. Wilkinson, Householder's Method for the Solution of the Algebraic Eigenproblem The Computer Journal. ,vol. 3, pp. 23- 27 ,(1960) , 10.1093/COMJNL/3.1.23
Douglas M. Hawkins, A. Ralston, H. S. Wilf, Mathematical Methods for Digital Computers The Statistician. ,vol. 19, pp. 350- 350 ,(1970) , 10.2307/2986841