Semantic annotation of summarized sensor data stream for effective query processing

作者: Shobharani Pacha , Suresh Ramalingam Murugan , R. Sethukarasi

DOI: 10.1007/S11227-017-2183-7

关键词:

摘要: In the big data era, volume of streaming produced by sensor networks is staggeringly large that enables business intelligence to make well-informed decisions on emerging modern applications. Performing analytics and query processing over fast arriving streams a tedious process. The semantic annotation stream provides high-level description, context supports intelligent querying analytics. This paper presents framework called SEmantic Annotation Summarized sensOr Data stReam (SEASOR) includes summarization, annotation, facilitates summarization merges these types values increase performance decrease memory space. scripted with help application-dependent base ontology extends Semantic Sensor Network (SSN) ontology. detailed descriptions for observation sensors using ontology, it divides into several subsets according sensing features. domain model processor access relevant results via an annotated Resource Description Framework (RDF). uses extended SPARQL (Cs-SPARQL) only relatively small subset RDF file allows extending support windows parallel streams. experimental prove proposed SEASOR timely answers user queries achieves better in terms result accuracy 95%.

参考文章(41)
Jayanta Mondal, Amol Deshpande, Stream Querying and Reasoning on Social Data Encyclopedia of Social Network Analysis and Mining. 2nd Ed.. pp. 2063- 2075 ,(2014) , 10.1007/978-1-4614-7163-9_391-1
Krishnaprasad Thirunarayan, Amit P. Sheth, Semantics-Empowered Approaches to Big Data Processing for Physical-Cyber-Social Applications national conference on artificial intelligence. pp. 68- 75 ,(2013)
Andre Bolles, Marco Grawunder, Jonas Jacobi, Streaming SPARQL - Extending SPARQL to Process Data Streams Lecture Notes in Computer Science. pp. 448- 462 ,(2008) , 10.1007/978-3-540-68234-9_34
Xi Chen, Huajun Chen, Ningyu Zhang, Jue Huang, Wen Zhang, Large-scale real-time semantic processing framework for Internet of Things International Journal of Distributed Sensor Networks. ,vol. 2015, pp. 2- ,(2015) , 10.1155/2015/365372
Oscar Rodriguez Rocha, Iacopo Vagliano, Cristhian Figueroa, Federico Cairo, Giuseppe Futia, Carlo Alberto Licciardi, Marco Marengo, Federico Morando, Semantic Annotation and Classification in Practice IT Professional. ,vol. 17, pp. 33- 39 ,(2015) , 10.1109/MITP.2015.29
Su Wook Ha, Yang Koo Lee, Thi Hong Nhan Vu, Young Jin Jung, Keun Ho Ryu, None, An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks Sensors. ,vol. 12, pp. 3997- 4015 ,(2012) , 10.3390/S120403997
Jaana Takis, AQM Saiful Islam, Christoph Lange, Sören Auer, Crowdsourced semantic annotation of scientific publications and tabular data in PDF international conference on semantic systems. pp. 1- 8 ,(2015) , 10.1145/2814864.2814887
Georg Krempl, Indre Žliobaite, Dariusz Brzeziński, Eyke Hüllermeier, Mark Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou, Jerzy Stefanowski, Open challenges for data stream mining research Sigkdd Explorations. ,vol. 16, pp. 1- 10 ,(2014) , 10.1145/2674026.2674028
Jun Zhao, Satya S. Sahoo, Paolo Missier, Amit Sheth, Carole Goble, Extending Semantic Provenance into the Web of Data IEEE Internet Computing. ,vol. 15, pp. 40- 48 ,(2011) , 10.1109/MIC.2011.7