Weibull analysis of atmospheric pressure plasma generation and evidence for field emission in microwave split-ring resonators

作者: Z Cohick , B Hall , D Wolfe , M Lanagan

DOI: 10.1088/1361-6595/AB54E9

关键词:

摘要: The generation of atmospheric pressure microplasmas using microwave resonators is promising for many applications due to the possibility high electron densities and low electrode degradation. In particular, such plasmas may help enable reconfigurable metamaterials operating from GHz THz. Since plasma require tens hundreds plasmas, it important find ways reduce power required breakdown. Here, we study gold silver split-ring (SRRs) with a variety materials near interelectrode gap (Cu, CuO nanowires, aluminum oxide). We focus on those fabricated traditional thick film technique, screen-printing, fs- ns-laser ablation. use laser ablation allows us explore small sizes (7-100um) different lasers parameters enables produce microstructures. utilize Weibull statistics examine breakdown in Ar without deep ultraviolet illumination SRRs. Fabrication methods are shown influence both Q-factor SRRs voltage independently. It found that superior performance terms consistency related modulus. requirement varied as widely an order magnitude depending fabrication method material used Furthermore, consider differences seen between various relate this microstructure/material which suggests field-emission play role providing seed electrons This need appears be especially 40um smaller.

参考文章(46)
Muhammad Farhan Shafique, Ian D. Robertson, A Two-Stage Process for Laser Prototyping of Microwave Circuits in LTCC Technology IEEE Transactions on Components, Packaging and Manufacturing Technology. ,vol. 5, pp. 723- 730 ,(2015) , 10.1109/TCPMT.2015.2434273
Dmitry Levko, Laxminarayan L. Raja, Breakdown of atmospheric pressure microgaps at high excitation frequencies Journal of Applied Physics. ,vol. 117, pp. 173303- ,(2015) , 10.1063/1.4919914
A P Papadakis, S Rossides, A C Metaxas, Microplasmas: A Review The Open Applied Physics Journal. ,vol. 4, pp. 45- 63 ,(2011) , 10.2174/1874183501104010045
Alan R Hoskinson, Jeffrey Hopwood, Spatially resolved spectroscopy and electrical characterization of microplasmas and switchable microplasma arrays Plasma Sources Science and Technology. ,vol. 23, pp. 015024- ,(2014) , 10.1088/0963-0252/23/1/015024
Abbas Semnani, Ayyaswamy Venkattraman, Alina A. Alexeenko, Dimitrios Peroulis, Frequency response of atmospheric pressure gas breakdown in micro/nanogaps Applied Physics Letters. ,vol. 103, pp. 063102- ,(2013) , 10.1063/1.4817978
R. A. Kishek, Y. Y. Lau, L. K. Ang, A. Valfells, R. M. Gilgenbach, Multipactor discharge on metals and dielectrics: Historical review and recent theories Physics of Plasmas. ,vol. 5, pp. 2120- 2126 ,(1998) , 10.1063/1.872883
K H Becker, K H Schoenbach, J G Eden, Microplasmas and applications Journal of Physics D. ,vol. 39, ,(2006) , 10.1088/0022-3727/39/3/R01
Ashwani Kumar, AK Srivastava, Pragya Tiwari, RV Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods Journal of Physics: Condensed Matter. ,vol. 16, pp. 8531- 8543 ,(2004) , 10.1088/0953-8984/16/47/007
T. J. Klein, Christopher J. Ploch, Cameron J. Recknagel, S. K. Remillard, Microwave breakdown of low pressure N2 gas in microgaps Applied Physics Letters. ,vol. 99, pp. 121503- ,(2011) , 10.1063/1.3641900
F Iza, J Hopwood, Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency Plasma Sources Science and Technology. ,vol. 14, pp. 397- 406 ,(2005) , 10.1088/0963-0252/14/2/023