Quantization of the Gaudin System

作者: D. Talalaev

DOI:

关键词:

摘要: In this article we exploit the known commutative family in Y (gl (n))-the Bethe subalgebra-and its special limit to construct quantization of the Gaudin integrable system. We give explicit expressions for quantum hamiltonians QI_k (u), k= 1,..., n. At small order k= 1,..., 3 they coincide with the quasiclassic ones, even in the case k= 4 we obtain quantum correction.

参考文章(5)
V. G. DRINFEL'D, Hopf algebras and the quantum Yang-Baxter equation Proceedings of the USSR Academy of Sciences. ,vol. 32, pp. 254- 258 ,(1985) , 10.1142/9789812798336_0013
L. Rybnikov, A. Chervov, D. Talalaev, Rational Lax operators and their quantization arXiv: High Energy Physics - Theory. ,(2004)
A. N. Kirillov, N. Yu. Reshetikhin, The Yangians, Bethe Ansatz and combinatorics Letters in Mathematical Physics. ,vol. 12, pp. 199- 208 ,(1986) , 10.1007/BF00416510
Maxim Nazarov, Grigori Olshanski, Bethe subalgebras in twisted Yangians Communications in Mathematical Physics. ,vol. 178, pp. 483- 506 ,(1996) , 10.1007/BF02099459
A. I. Molev, Yangians and their applications arXiv: Quantum Algebra. ,(2002)