Three-Dimensional and Axisymmetric Potential Problems

作者: George T. Symm

DOI: 10.1007/978-94-009-6192-0_6

关键词:

摘要: In this lecture we consider briefly the solution of Laplace’s equation in three dimensions: $$[\frac{{{\partial ^2}\phi }}{{\partial {{\text{x}}^{\text{2}}}}} + \frac{{{\partial {{\text{y}}^{\text{2}}}}} {{\text{z}}^{\text{2}}}}} = 0$$ (1) , by methods analogous to those applied two-dimensional problems preceding lecture. particular, discuss application simple-layer Newtonian potential Dirichlet problem.

参考文章(17)
Carlos Alberto Brebbia, Recent advances in boundary element methods Pentech Press. ,(1978)
R. Butterfield, Prasanta Kumar Banerjee, Boundary element methods in engineering science ,(1981)
C. A. Brebbia, S. Walker, Boundary Element Techniques in Engineering ,(1979)
Daniel Kinseth Reitan, Thomas James Higgins, Calculation of the Electrical Capacitance of a Cube Journal of Applied Physics. ,vol. 22, pp. 223- 226 ,(1951) , 10.1063/1.1699929
Daniel K. Reitan, Thomas J. Higgins, Accurate determination of the capacitance of a thin rectangular plate Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. ,vol. 75, pp. 761- 766 ,(1957) , 10.1109/TCE.1957.6372589
Oliver Dimon Kellogg, Foundations of potential theory ,(1929)
A.B. Birtles, B.J. Mayo, A.W. Bennett, Computer technique for solving 3-dimensional electron-optics and capacitance problems Proceedings of the Institution of Electrical Engineers. ,vol. 120, pp. 213- 220 ,(1973) , 10.1049/PIEE.1973.0044
J.R. Mautz, R.F. Harrington, Computer-program description. Computation of rotationally symmetric laplacian potentioals Proceedings of the Institution of Electrical Engineers. ,vol. 117, pp. 850- 852 ,(1970) , 10.1049/PIEE.1970.0169
M. A. Jaswon, G. T. Symm, T. A. Cruse, Integral equation methods in potential theory and elastostatics ,(1977)