Localized chaotic patterns in weakly dissipative systems

作者: D. Urzagasti , D. Laroze , H. Pleiner

DOI: 10.1140/EPJST/E2014-02089-X

关键词:

摘要: A generalized parametrically driven damped nonlinear Schrodinger equation is used to describe, close the resonance, dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects parametric forcing, spatial coupling, and dissipation allows for existence stable non-trivial uniform states as well homogeneous pattern states. latter can be regular chaotic. new family localized that connect asymptotically state with spatio-temporal chaotic numerically found. We discuss parameter range, where these structures exist. This article dedicated Prof. Helmut R. Brand on occasion his 60th birthday.

参考文章(72)
P. Coullet, T. Frisch, G. Sonnino, Dispersion-induced patterns. Physical Review E. ,vol. 49, pp. 2087- 2090 ,(1994) , 10.1103/PHYSREVE.49.2087
N. V. Alexeeva, I. V. Barashenkov, G. P. Tsironis, Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators Physical Review Letters. ,vol. 84, pp. 3053- 3056 ,(2000) , 10.1103/PHYSREVLETT.84.3053
John Burke, Edgar Knobloch, Homoclinic snaking: structure and stability. Chaos. ,vol. 17, pp. 037102- 037102 ,(2007) , 10.1063/1.2746816
Robert J. Deissler, Helmut R. Brand, Interaction of breathing localized solutions for subcritical bifurcations. Physical Review Letters. ,vol. 74, pp. 4847- 4850 ,(1995) , 10.1103/PHYSREVLETT.74.4847
P. COULLET, LOCALIZED PATTERNS AND FRONTS IN NONEQUILIBRIUM SYSTEMS International Journal of Bifurcation and Chaos. ,vol. 12, pp. 2445- 2457 ,(2002) , 10.1142/S021812740200614X
J. D. Scheel, M. C. Cross, Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection. Physical Review E. ,vol. 74, pp. 066301- ,(2006) , 10.1103/PHYSREVE.74.066301
John Burke, Edgar Knobloch, Localized states in the generalized Swift-Hohenberg equation. Physical Review E. ,vol. 73, pp. 056211- ,(2006) , 10.1103/PHYSREVE.73.056211