A posteriori error analysis for a transient conjugate heat transfer problem

作者: D. Estep , S. Tavener , T. Wildey

DOI: 10.1016/J.FINEL.2008.10.011

关键词:

摘要: We consider the accuracy of an operator decomposition finite element method for a transient conjugate heat transfer problem consisting two materials coupled through common boundary. derive accurate posteriori error estimates that account between components as well errors in solving iterative system. address loss order convergence results from decomposition, and show is limited by transferred gradient information. extend boundary flux recovery to problems use it regain expected efficient manner. In addition, we adaptively compute recovered only within domain dependence quantity interest.

参考文章(27)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
P. Hansbo, D. Estep, C. Johnson, K. Eriksson, Computational Differential Equations ,(1996)
P. Tsompanopoulou, E. Vavalis, J.R. Rice, Interface Relaxation Methods for Elliptic Differential Equations Applied Numerical Mathematics. ,vol. 32, pp. 219- 245 ,(2000) , 10.1016/S0168-9274(99)00016-1
David L. Ropp, John N. Shadid, Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems Journal of Computational Physics. ,vol. 203, pp. 449- 466 ,(2005) , 10.1016/J.JCP.2004.09.004
D. Estep, V. Ginting, D. Ropp, J. N. Shadid, S. Tavener, An A Posteriori–A Priori Analysis of Multiscale Operator Splitting SIAM Journal on Numerical Analysis. ,vol. 46, pp. 1116- 1146 ,(2008) , 10.1137/07068237X
M. Delfour, W. Hager, F. Trochu, Discontinuous Galerkin methods for ordinary differential equations Mathematics of Computation. ,vol. 36, pp. 455- 473 ,(1981) , 10.1090/S0025-5718-1981-0606506-0
G.F. Carey, S.S. Chow, M.K. Seager, Approximate boundary-flux calculations☆ Computer Methods in Applied Mechanics and Engineering. ,vol. 50, pp. 107- 120 ,(1985) , 10.1016/0045-7825(85)90085-4