Semi-direct products of Lie algebras, their invariants and representations

作者: Dmitri I. Panyushev

DOI:

关键词:

摘要: The goal of this paper is to extend the standard invariant-theoretic design, well-developed in reductive case, setting representation certain non-reductive groups. This concerns following notions and results: existence generic stabilisers isotropy groups for finite-dimensional representations; structure fields algebras invariants; quotient morphisms their fibres. One main tools obtaining Lie semi-direct product construction. We observe that there are surprisingly many whose adjoint has a polynomial algebra invariants. results Takiff, Geoffriau, Rais-Tauvel, Levasseur-Stafford concerning Takiff wider class products. includes $Z_2$-contractions simple generalised algebras.

参考文章(15)
A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, R. Steinberg, Seminar on Algebraic Groups and Related Finite Groups Springer Berlin Heidelberg. ,(1970) , 10.1007/BFB0081541
Haruhisa Nakajima, Kei-ichi Watanabe, The classification of quotient singularities which are complete intersections Springer, Berlin, Heidelberg. pp. 102- 120 ,(1984) , 10.1007/BFB0099359
Jean-Pierre Serre, Complex Semisimple Lie Algebras ,(2011)
Luchezar L Avramov, Complete intersections and symmetric algebras Journal of Algebra. ,vol. 73, pp. 248- 263 ,(1981) , 10.1016/0021-8693(81)90357-4
R. W. Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero Inventiones mathematicae. ,vol. 16, pp. 6- 14 ,(1972) , 10.1007/BF01391211
D. I. Panyushev, Complexity and rank of actions in invariant theory Journal of Mathematical Sciences. ,vol. 95, pp. 1925- 1985 ,(1999) , 10.1007/BF02169155
Dmitri I Panyushev, On covariants of reductive algebraic groups Indagationes Mathematicae. ,vol. 13, pp. 125- 129 ,(2002) , 10.1016/S0019-3577(02)90010-8
Gerald W. Schwarz, Representations of simple lie groups with regular rings of invariants Inventiones Mathematicae. ,vol. 49, pp. 167- 191 ,(1978) , 10.1007/BF01403085
Michel Brion, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple Annales de l’institut Fourier. ,vol. 33, pp. 1- 27 ,(1983) , 10.5802/AIF.902
William M. McGovern, David H. Collingwood, Nilpotent orbits in semisimple Lie algebras Van Nostrand Reinhold. ,(1993)