Resolvable Covering Arrays

作者: Charles J. Colbourn

DOI: 10.1080/15598608.2013.781461

关键词:

摘要: Two powerful recursive constructions of covering arrays strengths three and four use difference (DCAs). However, what is required in these not the algebraic structure differences a group, but rather that DCAs produce are resolvable. Both strengthened by using resolvable place DCAs. Many new found computational methods, do arise from produced. Improvements for bounds on array numbers shown to be substantial.

参考文章(18)
Brett Stevens, Eric Mendelsohn, Alan C. H. Ling, A direct construction of transversal covers using group divisible designs. Ars Combinatoria. ,vol. 63, ,(2002)
J.N. SRIVASTAVA, D.V. CHOPRA, Balanced Arrays and Orthogonal Arrays A Survey of Combinatorial Theory. pp. 411- 428 ,(1973) , 10.1016/B978-0-7204-2262-7.50040-5
Charles J. Colbourn, Jeffrey H. Dinitz, Making the Mols Table Computational and Constructive Design Theory. pp. 67- 134 ,(1996) , 10.1007/978-1-4757-2497-4_5
Esther Seiden, Rita Zemach, On Orthogonal Arrays Annals of Mathematical Statistics. ,vol. 37, pp. 1355- 1370 ,(1966) , 10.1214/AOMS/1177699280
Myra B. Cohen, Charles J. Colbourn, Alan C.H. Ling, Constructing strength three covering arrays with augmented annealing Discrete Mathematics. ,vol. 308, pp. 2709- 2722 ,(2008) , 10.1016/J.DISC.2006.06.036
Jianxing Yin, Constructions of difference covering arrays Journal of Combinatorial Theory, Series A. ,vol. 104, pp. 327- 339 ,(2003) , 10.1016/J.JCTA.2003.09.005
Lijun Ji, Jianxing Yin, Constructions of new orthogonal arrays and covering arrays of strength three Journal of Combinatorial Theory, Series A. ,vol. 117, pp. 236- 247 ,(2010) , 10.1016/J.JCTA.2009.06.002
Charles J. Colbourn, Strength two covering arrays: Existence tables and projection Discrete Mathematics. ,vol. 308, pp. 772- 786 ,(2008) , 10.1016/J.DISC.2007.07.050
Karen Meagher, Brett Stevens, Group construction of covering arrays Journal of Combinatorial Designs. ,vol. 13, pp. 70- 77 ,(2005) , 10.1002/JCD.20035