Computation of symbolic dynamics for one-dimensional maps

作者: Lorenzo Sella , Pieter Collins

DOI: 10.1016/J.CAM.2009.12.034

关键词:

摘要: In this paper we design and implement rigorous algorithms for computing symbolic dynamics piecewise-monotone-continuous maps of the interval. The are based on forwards backwards approximations boundary, discontinuity critical points. We explain how to handle discontinuities in which occur when computed partition element boundaries not disjoint. method is applied compute entropy bounds return map singular limit a switching system with hysteresis forced Van der Pol equation.

参考文章(46)
Michał Misiurewicz, Horseshoes for mappings of the interval IM PAN, call no. cz331. ,vol. 27, pp. 167- 169 ,(1979)
John Milnor, William Thurston, On iterated maps of the interval Dynamical Systems. pp. 465- 563 ,(1988) , 10.1007/BFB0082847
James R. Munkres, Elements of Algebraic Topology ,(1984)
Lorenzo Sella, Pieter Collins, Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata Hybrid Systems: Computation and Control. pp. 486- 499 ,(2008) , 10.1007/978-3-540-78929-1_35
M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings Studia Mathematica. ,vol. 67, pp. 45- 63 ,(1980) , 10.4064/SM-67-1-45-63
Andrzej Szymczak, The Conley index for decompositions of isolated invariant sets Fundamenta Mathematicae. ,vol. 148, pp. 71- 90 ,(1995) , 10.4064/FM-148-1-71-90
Douglas A. Lind, Brian Marcus, An Introduction to Symbolic Dynamics and Coding ,(2010)
Makoto Mori, Fredholm determinant for piecewise linear transformations Osaka Journal of Mathematics. ,vol. 27, pp. 81- 116 ,(1990) , 10.18910/10418
Robert Gilmore, Marc Lefranc, Nicholas B. Tufillaro, The Topology of Chaos American Journal of Physics. ,vol. 71, pp. 508- 510 ,(2003) , 10.1119/1.1564612