Nonsymmetric Macdonald polynomials and Demazure characters

作者: Bogdan Ion

DOI: 10.1215/S0012-7094-03-11624-5

关键词:

摘要: We establish a connection between specialization of the nonsymmetric Macdonald polynomials and the Demazure characters the corresponding affine Kac-Moody algebra. This allows us to obtain a representation-theoretical interpretation coefficients the expansion specialized symmetric in the basis formed by irreducible associated finite Lie

参考文章(18)
Yasmine B. Sanderson, On the Connection Between Macdonald Polynomials and Demazure Characters Journal of Algebraic Combinatorics. ,vol. 11, pp. 269- 275 ,(2000) , 10.1023/A:1008786420650
Friedrich Knop, Integrality of two variable Kostka functions arXiv: Quantum Algebra. ,(1996)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Siddhartha Sahi, A new formula for weight multiplicities and characters Duke Mathematical Journal. ,vol. 101, pp. 77- 84 ,(2000) , 10.1215/S0012-7094-00-10113-5
James E. Humphreys, Reflection groups and coxeter groups ,(1990)
Shrawan Kumar, Demazure character formula in arbitrary Kac-Moody setting Inventiones Mathematicae. ,vol. 89, pp. 395- 423 ,(1987) , 10.1007/BF01389086
I. Cherednik, Intertwining operators of double affine Hecke algebras Selecta Mathematica-new Series. ,vol. 3, pp. 459- 495 ,(1997) , 10.1007/S000290050017
Friedrich Knop, Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials Inventiones Mathematicae. ,vol. 128, pp. 9- 22 ,(1997) , 10.1007/S002220050134
George Lusztig, Affine Hecke algebras and their graded version Journal of the American Mathematical Society. ,vol. 2, pp. 599- 635 ,(1989) , 10.1090/S0894-0347-1989-0991016-9