Chi‐Square, Partition of

作者: Z. Gilula , Shelby J. Haberman

DOI: 10.1002/9781118445112.STAT04859

关键词:

摘要: A chi-square statistic suitable for testing a primary hypothesis can be partitioned into components such that each component gives test corresponding secondary hypothesis. Some partitionings are exact and some approximate. The theory is based on the Fisher–Cochran theorem about decomposing quadratic functions of normal variables. history this technique surveyed. Applications described contingency tables, with main focus two-way table likelihood-ratio statistics. Brief mention also made partitioning non-chi-square components, as decomposition forms basis correspondence analysis. Keywords: contingency tables; correspondence analysis; R. A. Fisher; independence; likelihood-ratio statistic; Pearson statistic; quadratic form

参考文章(17)
K. R. Gabriel, Simultaneous Test Procedures for Multiple Comparisons on Categorical Data Journal of the American Statistical Association. ,vol. 61, pp. 1081- 1096 ,(1966) , 10.1080/01621459.1966.10482197
Zvi Gilula, Shelby J. Haberman, The Analysis of Multivariate Contingency Tables by Restricted Canonical and Restricted Association Models Journal of the American Statistical Association. ,vol. 83, pp. 760- 771 ,(1988) , 10.1080/01621459.1988.10478659
Zvi Gilula, Shelby J. Haberman, Canonical Analysis of Contingency Tables by Maximum Likelihood Journal of the American Statistical Association. ,vol. 81, pp. 780- 788 ,(1986) , 10.1080/01621459.1986.10478335
William G. Cochran, The $\chi^2$ Test of Goodness of Fit Annals of Mathematical Statistics. ,vol. 23, pp. 315- 345 ,(1952) , 10.1214/AOMS/1177729380
Gudmund R. Iversen, Decomposing Chi-Square Sociological Methods & Research. ,vol. 8, pp. 143- 157 ,(1979) , 10.1177/004912417900800202
J. B. S. HALDANE, NOTE ON THE PRECEDING ANALYSIS OF MENDELIAN SEGREGATIONS Biometrika. ,vol. 31, pp. 67- 71 ,(1939) , 10.1093/BIOMET/31.1-2.67