Whistler-mode waves upstream of Saturn

作者: W. S. Kurth , J. S. Halekas , D. A. Gurnett , M. K. Dougherty , A. H. Sulaiman

DOI: 10.1002/2016JA023501

关键词:

摘要: Whistler-mode waves are generated within and can propagate upstream of collisionless shocks. They known to play a role in electron thermodynamics/acceleration and, under certain conditions, markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage Cassini's presence at ~10 AU explore importance whistler-mode parameter regime typically characterized by higher Mach number (median ~14) shocks, well significantly different IMF structure, compared near Earth. We identify electromagnetic precursors small subset bow crossings with properties which consistent waves. find these monochromatic, low-frequency, circularly-polarized have typical frequency range 0.2 – 0.4 Hz spacecraft frame. This is due lower ion cyclotron frequencies Saturn, between whistler develop. The also predominantly right-handed frame, opposite sense what attributed weaker Doppler shift, owing large angle solar wind velocity magnetic field vectors 10 AU. Our results on low occurrence Saturn underpins supercritical Saturn.

参考文章(35)
L. B. Wilson, A. Koval, A. Szabo, A. Breneman, C. A. Cattell, K. Goetz, P. J. Kellogg, K. Kersten, J. C. Kasper, B. A. Maruca, M. Pulupa, Observations of electromagnetic whistler precursors at supercritical interplanetary shocks Geophysical Research Letters. ,vol. 39, ,(2012) , 10.1029/2012GL051581
C. F. Kennel, J. P. Edmiston, T. Hada, A Quarter Century of Collisionless Shock Research Collisionless Shocks in the Heliosphere: A Tutorial Review. ,vol. 34, pp. 1- 36 ,(2013) , 10.1029/GM034P0001
David Burgess, Manfred Scholer, Collisionless shocks in space plasmas : structure and accelerated particles Cambridge University Press. ,(2015) , 10.1017/CBO9781139044097
J. S. Halekas, D. A. Brain, D. L. Mitchell, R. P. Lin, Whistler waves observed near lunar crustal magnetic sources Geophysical Research Letters. ,vol. 33, ,(2006) , 10.1029/2006GL027684
C.S. Wu, D. Dillenburg, L.F. Ziebell, H.P. Freund, Excitation of whistler waves by reflected auroral electrons Planetary and Space Science. ,vol. 31, pp. 499- 507 ,(1983) , 10.1016/0032-0633(83)90041-7
G. Paschmann, N. Sckopke, I. Papamastorakis, J. R. Asbridge, S. J. Bame, J. T. Gosling, Characteristics of reflected and diffuse ions upstream from the Earth's bow shock Journal of Geophysical Research: Space Physics. ,vol. 86, pp. 4355- 4364 ,(1981) , 10.1029/JA086IA06P04355
D. O. Pushkin, D. E. Melnikov, V. M. Shevtsova, Pushkin, Melnikov, and Shevtsova Reply Physical Review Letters. ,vol. 108, pp. 2- ,(2012) , 10.1103/PHYSREVLETT.108.249402
The structure of magneto-hydrodynamic shock waves Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 233, pp. 367- 376 ,(1955) , 10.1098/RSPA.1955.0272
M. Balikhin, M. Gedalin, S. D. Bale, V. Lobzin, Y. Hobara, S. N. Walker, F. Mozer, J. Soucek, S. Schwartz, H. Comisel, V. Krasnoselskikh, D. Sundkvist, The Dynamic Quasiperpendicular Shock: Cluster Discoveries Space Science Reviews. ,vol. 178, pp. 535- 598 ,(2013) , 10.1007/S11214-013-9972-Y
M. M. Mellott, E. W. Greenstadt, The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations Journal of Geophysical Research. ,vol. 89, pp. 2151- 2161 ,(1984) , 10.1029/JA089IA04P02151