Admissibility of solutions to the Riemann problem for systems of mixed type

作者: Gerald Warnecke

DOI: 10.1007/978-1-4613-9049-7_19

关键词:

摘要: The transonic small disturbance equation is put into the context of first order systems conservation laws. admissibility shock solutions studied via Lax inequalities, entropy viscosity method, Oleǐnik’s E-condition, Liu’s extended condition and a class generalized inequalities. This includes case mixed-type shocks (elliptic-hyperbolic). theory shown to arise from an additional law different one used in classical p-system isentropic gas dynamics.

参考文章(44)
Izrail Moiseevich Gelfand, Some problems in the theory of quasilinear equations Springer Berlin Heidelberg. pp. 518- 604 ,(1987) , 10.1007/978-3-642-61705-8_30
PETER LAX, Shock Waves and Entropy Contributions to Nonlinear Functional Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971. pp. 603- 634 ,(1971) , 10.1016/B978-0-12-775850-3.50018-2
Constantine M. Dafermos, Hyperbolic Systems of Conservation Laws Springer Netherlands. pp. 25- 70 ,(1983) , 10.1007/978-94-009-7189-9_2
Klaus Oswatitsch, Grundlagen der Gasdynamik Springer-Verlag. ,(1976) , 10.1007/978-3-7091-8415-8
Shui-Nee Chow, Jack K. Hale, Methods of Bifurcation Theory ,(2011)
Constantine M Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws Journal of Differential Equations. ,vol. 14, pp. 202- 212 ,(1973) , 10.1016/0022-0396(73)90043-0