Classification of hyperspectral image based on deep belief networks

作者: Tong Li , Junping Zhang , Ye Zhang

DOI: 10.1109/ICIP.2014.7026039

关键词:

摘要: … by Geoffrey Hinton [6]. Typical deep neural network architectures include Deep Belief … In this paper, one of the deep learning architectures — deep belief networks—which was originally …

参考文章(11)
Geoffrey Hinton, Deep belief networks Scholarpedia. ,vol. 4, pp. 5947- ,(2009) , 10.4249/SCHOLARPEDIA.5947
Geoffrey E Hinton, Ruslan R Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks Science. ,vol. 313, pp. 504- 507 ,(2006) , 10.1126/SCIENCE.1127647
Geoffrey E. Hinton, Training products of experts by minimizing contrastive divergence Neural Computation. ,vol. 14, pp. 1771- 1800 ,(2002) , 10.1162/089976602760128018
J.A. Costa, A.O. Hero, Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Transactions on Signal Processing. ,vol. 52, pp. 2210- 2221 ,(2004) , 10.1109/TSP.2004.831130
Geoffrey E. Hinton, Learning multiple layers of representation Trends in Cognitive Sciences. ,vol. 11, pp. 428- 434 ,(2007) , 10.1016/J.TICS.2007.09.004
Antonio Plaza, Jon Atli Benediktsson, Joseph W. Boardman, Jason Brazile, Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel, Paolo Gamba, Anthony Gualtieri, Mattia Marconcini, James C. Tilton, Giovanna Trianni, Recent Advances in Techniques for Hyperspectral Image Processing Remote Sensing of Environment. ,vol. 113, ,(2009) , 10.1016/J.RSE.2007.07.028
Y. Bengio, A. Courville, P. Vincent, Representation Learning: A Review and New Perspectives IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 1798- 1828 ,(2013) , 10.1109/TPAMI.2013.50