A new matrix method for the Casimir operators of the Lie algebras w{\mathfrak s}{\mathfrak p}(N\hbox{,}\, {{\mathbb{R}}}) and I{\mathfrak s}{\mathfrak p}(2N\hbox{,}\, {{\mathbb{R}}})

作者: Rutwig Campoamor-Stursberg

DOI: 10.1088/0305-4470/38/19/009

关键词:

摘要: A method is given to determine the Casimir operators of perfect Lie algebras and inhomogeneous in terms polynomials associated with a parametrized (2N + 1) × 1)-matrix. For symplectic this matrix shown be faithful representation. We further analyse invariants for extended Schrodinger algebra (N dimensions, which arises naturally as subalgebra . The other classes algebras, some applications missing label problem are given.

参考文章(23)
Francisco J Herranz, Mariano Santander, Casimir invariants for the complete family of quasisimple orthogonal algebras Journal of Physics A. ,vol. 30, pp. 5411- 5426 ,(1997) , 10.1088/0305-4470/30/15/026
EVELYN WEIMAR-WOODS, CONTRACTIONS, GENERALIZED INÖNÜ-WIGNER CONTRACTIONS AND DEFORMATIONS OF FINITE-DIMENSIONAL LIE ALGEBRAS Reviews in Mathematical Physics. ,vol. 12, pp. 1505- 1529 ,(2000) , 10.1142/S0129055X00000605
Marconi Soares Barbosa, Esmerindo de Sousa Bernardes, Differential invariants for symplectic Lie algebras realized by boson operators Journal of Physics A. ,vol. 37, pp. 4797- 4812 ,(2004) , 10.1088/0305-4470/37/17/010
B. Gruber, L. O'Raifeartaigh, S Theorem and Construction of the Invariants of the Semisimple Compact Lie Algebras Journal of Mathematical Physics. ,vol. 5, pp. 1796- 1804 ,(1964) , 10.1063/1.1704102
C Burdik, A new class of realisations of the Lie algebra sp(n,R) Journal of Physics A. ,vol. 19, pp. 2465- 2471 ,(1986) , 10.1088/0305-4470/19/13/012
J. Tolar, P. Trávnı́ček, Graded contractions of symplectic Lie algebras in collective models Journal of Mathematical Physics. ,vol. 38, pp. 501- 523 ,(1997) , 10.1063/1.531831
L. Abellanas, L. Martinez Alonso, A general setting for Casimir invariants Journal of Mathematical Physics. ,vol. 16, pp. 1580- 1584 ,(1975) , 10.1063/1.522727
A.O. Barut, Bo-wei Xu, Conformal covariance and the probability interpretation of wave equations Physics Letters A. ,vol. 82, pp. 218- 220 ,(1981) , 10.1016/0375-9601(81)90188-2