Nonseparable sparsity based hyperspectral compressive sensing

作者: Lei Zhang , Wei Wei , Yanning Zhang , Fei Li , Hangqi Yan

DOI: 10.1109/WHISPERS.2015.8075427

关键词:

摘要: Accurate reconstruction of hyperspectral image(HSI) from a few random sampled measurements is crucial for hyperspectal compressive sensing. The underlying sparsity HSI one factor reconstruction. However, the s-parsity unknown in reality and varied with different noise. To address this problem, novel nonseparable based sensing(NSHCS) method proposed study. We use empirical Bayes to deduce non-separable constraint. correlation among sparse coefficients signal modeled implicitly by Since parameters constraint are determined noise term together, learned can be adaptive With constraint, NSHCS reconstruct precisely. Experimental results demonstrate superiority over several state-of-the-art sensing methods

参考文章(10)
Antonio Plaza, Gabriel Martin, Jose M. Bioucas-Dias, Hyperspectral coded aperture (HYCA): A new technique for hyperspectral compressive sensing european signal processing conference. pp. 1- 5 ,(2013) , 10.5281/ZENODO.43598
David L. Donoho, Yaakov Tsaig, Iddo Drori, Jean-Luc Starck, Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit IEEE Transactions on Information Theory. ,vol. 58, pp. 1094- 1121 ,(2012) , 10.1109/TIT.2011.2173241
Robert Tibshirani, Trevor Hastie, Berwin A. Turlach, Bradley Efron, Jean Michel Loubes, Jean Michel Loubes, Hemant Ishwaran, Robert A. Stine, Keith Knight, Sanford Weisberg, Saharon Rosset, Saharon Rosset, Iain Johnstone, Pascal Massart, Pascal Massart, David Madigan, J. I. Zhu, Greg Ridgeway, Greg Ridgeway, Least angle regression Annals of Statistics. ,vol. 32, pp. 407- 499 ,(2004) , 10.1214/009053604000000067
S.D. Babacan, R. Molina, A.K. Katsaggelos, Bayesian Compressive Sensing Using Laplace Priors IEEE Transactions on Image Processing. ,vol. 19, pp. 53- 63 ,(2010) , 10.1109/TIP.2009.2032894
Chengbo Li, Ting Sun, K. F. Kelly, Yin Zhang, A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing IEEE Transactions on Image Processing. ,vol. 21, pp. 1200- 1210 ,(2012) , 10.1109/TIP.2011.2167626
Jürgen Hahn, Christian Debes, Michael Leigsnering, Abdelhak M. Zoubir, Compressive sensing and adaptive direct sampling in hyperspectral imaging Digital Signal Processing. ,vol. 26, pp. 113- 126 ,(2014) , 10.1016/J.DSP.2013.12.001
Mohammad Golbabaee, Pierre Vandergheynst, Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 2741- 2744 ,(2012) , 10.1109/ICASSP.2012.6288484
David Wipf, Haichao Zhang, Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty neural information processing systems. ,vol. 26, pp. 1556- 1564 ,(2013)
Joel A. Tropp, Anna C. Gilbert, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit IEEE Transactions on Information Theory. ,vol. 53, pp. 4655- 4666 ,(2007) , 10.1109/TIT.2007.909108
Rick Chartrand, Wotao Yin, Iteratively reweighted algorithms for compressive sensing international conference on acoustics, speech, and signal processing. pp. 3869- 3872 ,(2008) , 10.1109/ICASSP.2008.4518498