A non-commutative Amir-Cambern theorem for von Neumann algebras and nuclear $C^*$-algebras

作者: Eric Ricard , Jean Roydor

DOI:

关键词:

摘要: We prove that von Neumann algebras and separable nuclear $C^*$-algebras are stable for the Banach-Mazur cb-distance. A technical step is to show unital almost completely isometric maps between multiplicative selfadjoint. Also as an intermediate result, we compare cb-distance Kadison-Kastler distance. Finally, if two close enough cb-distance, then they have at most same length.

参考文章(13)
Christian Le Merdy, David P. Blecher, Operator Algebras and Their Modules: An Operator Space Approach ,(2005)
Gilles Pisier, The similarity degree of an operator algebra, II Mathematische Zeitschrift. ,vol. 235, pp. 53- 82 ,(2000) , 10.1007/S002090050503
L. Terrell Gardner, A note on isomorphisms of $C^*$-algebras Bulletin of the American Mathematical Society. ,vol. 70, pp. 788- 791 ,(1964) , 10.1090/S0002-9904-1964-11238-6
B. E. Johnson, Perturbations of Banach Algebras Proceedings of the London Mathematical Society. ,vol. s3-34, pp. 439- 458 ,(1977) , 10.1112/PLMS/S3-34.3.439
Iain Raeburn, Joseph L Taylor, Hochschild cohomology and perturbations of Banach algebras Journal of Functional Analysis. ,vol. 25, pp. 258- 266 ,(1977) , 10.1016/0022-1236(77)90072-6
Michael Cambern, On isomorphisms with small bound Proceedings of the American Mathematical Society. ,vol. 18, pp. 1062- 1066 ,(1967) , 10.1090/S0002-9939-1967-0217580-2
Erik Christensen, Allan Sinclair, Roger R. Smith, Stuart White, Perturbations of C*-algebraic invariants Geometric and Functional Analysis. ,vol. 20, pp. 368- 397 ,(2010) , 10.1007/S00039-010-0070-Y
D. Amir, On isomorphisms of continuous function spaces Israel Journal of Mathematics. ,vol. 3, pp. 205- 210 ,(1965) , 10.1007/BF03008398