Many-body optics. V. Virtual-mode theory, and phenomenological binding energies in the complex-dielectric-constant approximation

作者: R K Bullough

DOI: 10.1088/0305-4470/3/6/013

关键词:

摘要: For Pt. IV see ibid., vol. 3, no. 6, p. 726 (1970). It is shown that the one-component virtual-mode theory of previous paper, which a well-defined translationally invariant many-body optical molecular fluid, can be extended without difficulty to two-component fluid. inferred both 'virtual' and 'real' electromagnetic modes developed previously applicable fluids with any number components.

参考文章(19)
R K Bullough, Many-body optics. III. The optical extinction theorem and ϵl(k,ω) Journal of Physics A: General Physics. ,vol. 3, pp. 708- 725 ,(1970) , 10.1088/0305-4470/3/6/011
E.M. LIFSHITZ, M. Hamermesh, The theory of molecular attractive forces between solids Sov.Phys.JETP. ,vol. 2, pp. 73- 83 ,(1956) , 10.1016/B978-0-08-036364-6.50031-4
R K Bullough, Many-body optics. IV, The total transverse response and ϵt(kω) Journal of Physics A: General Physics. ,vol. 3, pp. 726- 750 ,(1970) , 10.1088/0305-4470/3/6/012
R.K. Bullough, A.-S.F. Obada, The binding energy of molecular crystals Chemical Physics Letters. ,vol. 3, pp. 177- 181 ,(1969) , 10.1016/0009-2614(69)80130-2
R.K. Bullough, F. Hynne, Microscopic extensions of the Einstein optical scattering equations Chemical Physics Letters. ,vol. 2, pp. 307- 311 ,(1968) , 10.1016/0009-2614(68)80082-X
R. K. Bullough, Complex Refractive Index and a Two‐Band Model in the Theory of Hypochromism Journal of Chemical Physics. ,vol. 48, pp. 3712- 3722 ,(1968) , 10.1063/1.1669675
R.K. Bullough, A.-S.F. Obada, Dielectric constants for the cubic molecular crystal Chemical Physics Letters. ,vol. 3, pp. 114- 117 ,(1969) , 10.1016/0009-2614(69)80064-3
A.-S.F. Obada, R.K. Bullough, Optical propagators and properties of the finite molecular crystal Physica D: Nonlinear Phenomena. ,vol. 42, pp. 475- 481 ,(1969) , 10.1016/0031-8914(69)90040-8
I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, The general theory of van der Waals forces Advances in Physics. ,vol. 10, pp. 165- 209 ,(1961) , 10.1080/00018736100101281
P. Nozières, D. Pines, A dielectric formulation of the many body problem: Application to the free electron gas Il Nuovo Cimento. ,vol. 9, pp. 470- 490 ,(1958) , 10.1007/BF02725103