Chebyshev type inequalities by means of copulas

作者: Sever S Dragomir , Eder Kikianty , None

DOI: 10.1186/S13660-017-1549-Y

关键词:

摘要: A copula is a function which joins (or ‘couples’) bivariate distribution to its marginal (one-dimensional) functions. In this paper, we obtain Chebyshev type inequalities by utilising copulas.

参考文章(6)
R. Moynihan, B. Schweizer, A. Sklar, Inequalities Among Operations on Probability Distribution Functions Birkhäuser, Basel. pp. 133- 149 ,(1978) , 10.1007/978-3-0348-5563-1_13
Wing-Keung Wong, Ricardas Zitikis, Martin Egozcue, Luis Fuentes Garcia, Revisiting Gruss's inequality: covariance bounds,QDE but not QD copulas, and central moments arXiv: Probability. ,(2010)
S. Janssens, B. De Baets, H. De Meyer, Bell-type inequalities for quasi-copulas Fuzzy Sets and Systems. ,vol. 148, pp. 263- 278 ,(2004) , 10.1016/J.FSS.2004.03.015
E. L. Lehmann, Some Concepts of Dependence Annals of Mathematical Statistics. ,vol. 37, pp. 1137- 1153 ,(1966) , 10.1007/978-1-4614-1412-4_64
Roger B. Nelsen, An Introduction to Copulas ,(1998)