MLPG approximation to the p-Laplace problem

作者: Davoud Mirzaei , Mehdi Dehghan

DOI: 10.1007/S00466-010-0521-1

关键词:

摘要: Meshless local Petrov-Galerkin (MLPG) method is discussed for solving 2D, nonlinear, elliptic p-Laplace or p-harmonic equation in this article. The problem transferred to corresponding boundary integral (LBIE) using Divergence theorem. analyzed domain divided into small circular sub-domains which the LBIE applied. To approximate unknown physical quantities, nodal points spread over and MLS approximation, are utilized. a meshless method, since it does not require any background interpolation integration cells dose depend on geometry of domain. proposed scheme simple computationally attractive. Applications demonstrated through illustrative examples.

参考文章(41)
Satya N. Atluri, Shengping Shen, The meshless local Petrov-Galerkin (MLPG) method Tech Science Press. ,(2002)
C. Armando Duarte, J. Tinsley Oden, H‐p clouds—an h‐p meshless method Numerical Methods for Partial Differential Equations. ,vol. 12, pp. 673- 705 ,(1996) , 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
Do Wan Kim, Young-Cheol Yoon, Wing Kam Liu, Ted Belytschko, Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative Journal of Computational Physics. ,vol. 221, pp. 370- 394 ,(2007) , 10.1016/J.JCP.2006.06.023
J. Sladek, V. Sladek, P. Solek, Ch. Zhang, Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG International Journal of Solids and Structures. ,vol. 47, pp. 1381- 1391 ,(2010) , 10.1016/J.IJSOLSTR.2010.01.025
D.A. Hu, S.Y. Long, K.Y. Liu, G.Y. Li, A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation Engineering Analysis With Boundary Elements. ,vol. 30, pp. 399- 404 ,(2006) , 10.1016/J.ENGANABOUND.2005.12.002
Do Wan Kim, Wing Kam Liu, Maximum principle and convergence analysis for the meshfree point collocation method SIAM Journal on Numerical Analysis. ,vol. 44, pp. 515- 539 ,(2006) , 10.1137/04060809X
D.F. Gilhooley, J.R. Xiao, R.C. Batra, M.A. McCarthy, J.W. Gillespie, Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions Computational Materials Science. ,vol. 41, pp. 467- 481 ,(2008) , 10.1016/J.COMMATSCI.2007.05.003
P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods Mathematics of Computation. ,vol. 37, pp. 141- 158 ,(1981) , 10.1090/S0025-5718-1981-0616367-1
Satya N. Atluri, Shengping Shen, The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method Advances in Computational Mathematics. ,vol. 23, pp. 73- 93 ,(2005) , 10.1007/S10444-004-1813-9