Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data.

作者: Yanchun Bao , Veronica Vinciotti , Ernst Wit , Peter AC ’t Hoen

DOI: 10.1186/1471-2105-14-169

关键词:

摘要: ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and repeated experiments with the same antibody. These differences have a large impact on quality of ChIP-seq data: more efficient experiment will necessarily lead to higher signal background ratio, therefore an apparent larger number enriched regions, compared less experiment. In this paper, we show how IP can be explicitly accounted for in joint statistical modelling data. We fit latent mixture model eight two proteins, from laboratories where are used proteins. use parameters estimate individual experiments, find that these clearly laboratories, amongst technical replicates lab. When account ChIP efficiency, regions bound than ones, at false discovery rate. A priori knowledge binding sites across also included robust detection differentially among propose multiple data sets. The framework present accounts data, allows jointly, rather individually, leading biological conclusions.

参考文章(34)
A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, S. J. M. Jones, FindPeaks 3.1 Bioinformatics. ,vol. 24, pp. 1729- 1730 ,(2008) , 10.1093/BIOINFORMATICS/BTN305
Han Xu, Chia-Lin Wei, Feng Lin, Wing-Kin Sung, An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data Bioinformatics. ,vol. 24, pp. 2344- 2349 ,(2008) , 10.1093/BIOINFORMATICS/BTN402
Zhibin Wang, Chongzhi Zang, Kairong Cui, Dustin E. Schones, Artem Barski, Weiqun Peng, Keji Zhao, Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes Cell. ,vol. 138, pp. 1019- 1031 ,(2009) , 10.1016/J.CELL.2009.06.049
Zhen Shao, Yijing Zhang, Guo-Cheng Yuan, Stuart H Orkin, David J Waxman, MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets Genome Biology. ,vol. 13, pp. 1- 17 ,(2012) , 10.1186/GB-2012-13-3-R16
Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E Bernstein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li, X Shirley Liu, None, Model-based Analysis of ChIP-Seq (MACS) Genome Biology. ,vol. 9, pp. 1- 9 ,(2008) , 10.1186/GB-2008-9-9-R137
Cenny Taslim, Kun Huang, Tim Huang, Shili Lin, Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization. Methods of Molecular Biology. ,vol. 802, pp. 275- 291 ,(2012) , 10.1007/978-1-61779-400-1_18
Hongkai Ji, Hui Jiang, Wenxiu Ma, David S Johnson, Richard M Myers, Wing H Wong, An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotechnology. ,vol. 26, pp. 1293- 1300 ,(2008) , 10.1038/NBT.1505
Joel Rozowsky, Ghia Euskirchen, Raymond K Auerbach, Zhengdong D Zhang, Theodore Gibson, Robert Bjornson, Nicholas Carriero, Michael Snyder, Mark B Gerstein, PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nature Biotechnology. ,vol. 27, pp. 66- 75 ,(2009) , 10.1038/NBT.1518
R. Thomas Koerber, Ho Sung Rhee, Cizhong Jiang, B. Franklin Pugh, Interaction of Transcriptional Regulators with Specific Nucleosomes across the Saccharomyces Genome Molecular Cell. ,vol. 35, pp. 889- 902 ,(2009) , 10.1016/J.MOLCEL.2009.09.011