THE JUMP SIZES OF THE PRODUCT-LIMIT ESTIMATOR UNDER RAMDOM CENSORSHIP

作者: Bih-Sheue Shieh , Cheun-Der Lea

DOI:

关键词:

摘要: SUMMARY. In this study, we investigate the supremum of jump sizes Efron's version product-limit (PL)-estimator Fn and obtain following result: If PfXiYig > p; 0 < p 1; i = 1;¢¢¢;n then supi ¢i o(n ip ) where f¢ig denote Fn. Using result, construct some quite smooth estimates b such that supx jb Fn(x)iFn(x)j ).

参考文章(10)
B. Efron, The two sample problem with censored data Proc. Fifth Berkely Symp. Math. Statist. Prob.. ,vol. 4, pp. 831- 853 ,(1967)
E. Weits, The second order optimality of a smoothed Kaplan-Meier estimator. Scandinavian Journal of Statistics. ,vol. 20, pp. 111- 132 ,(1993)
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
Shaw-Hwa Lo, Kani Chen, On the rate of uniform convergence of the product-limit estimator: strong and weak laws Annals of Statistics. ,vol. 25, pp. 1050- 1087 ,(1997) , 10.1214/AOS/1069362738
S. H. Lo, Y. P. Mack, J. L. Wang, Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator Probability Theory and Related Fields. ,vol. 80, pp. 461- 473 ,(1989) , 10.1007/BF01794434
Sándor CsörgŐ, Lajos Horváth, The rate of strong uniform consistency for the product-limit estimator Probability Theory and Related Fields. ,vol. 62, pp. 411- 426 ,(1983) , 10.1007/BF00535263
N. Breslow, J. Crowley, A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship Annals of Statistics. ,vol. 2, pp. 437- 453 ,(1974) , 10.1214/AOS/1176342705
F. N. Fritsch, R. E. Carlson, Monotone Piecewise Cubic Interpolation SIAM Journal on Numerical Analysis. ,vol. 17, pp. 238- 246 ,(1980) , 10.1137/0717021
Rupert G. Miller, Survival Analysis ,(1981)