Non-linear System Identification Using the Hilbert-Huang Transform and Complex Non-linear Modal Analysis

作者: Vaclav Ondra , Ibrahim A. Sever , Christoph W. Schwingshackl

DOI: 10.1007/978-3-319-54404-5_8

关键词:

摘要: Modal analysis is a well-established method for of linear dynamic structures, but its extension to non-linear structures has proven be much more problematic. A number viewpoints on modal as well range different system identification techniques have emerged in the past, each which tries preserve subset properties original theory. The objective this paper discuss how Hilbert-Huang transform can used detection and characterization non-linearity, present an optimization framework combines complex quantification selected model. It argued that modes relate intrinsic mode functions through reduced order model slow-flow dynamics. demonstrated simulated data from with cubic non-linearity.

参考文章(30)
R.J. Kuether, L. Renson, T. Detroux, C. Grappasonni, G. Kerschen, M.S. Allen, Nonlinear normal modes modal interactions and isolated resonance curves Journal of Sound and Vibration. ,vol. 351, pp. 299- 310 ,(2015) , 10.1016/J.JSV.2015.04.035
Jean-Philippe Noël, L. Renson, C. Grappasonni, G. Kerschen, Identification of nonlinear normal modes of engineering structures under broadband forcing Mechanical Systems and Signal Processing. ,vol. 74, pp. 95- 110 ,(2016) , 10.1016/J.YMSSP.2015.04.016
Young S. Lee, Stylianos Tsakirtzis, Alexander F. Vakakis, Lawrence A. Bergman, D. Michael McFarland, A time-domain nonlinear system identification method based on multiscale dynamic partitions Meccanica. ,vol. 46, pp. 625- 649 ,(2011) , 10.1007/S11012-010-9327-7
Young S. Lee, Stylianos Tsakirtzis, Alexander F. Vakakis, Lawrence A. Bergman, D. Michael McFarland, Physics-Based Foundation for Empirical Mode Decomposition AIAA Journal. ,vol. 47, pp. 2938- 2963 ,(2009) , 10.2514/1.43207
G. Kerschen, A.F. Vakakis, Y.S. Lee, D.M. McFarland, L.A. Bergman, Toward a Fundamental Understanding of the Hilbert-Huang Transform in Nonlinear Structural Dynamics: Journal of Vibration and Control. ,vol. 14, pp. 77- 105 ,(2008) , 10.1177/1077546307079381
Gaëtan Kerschen, Keith Worden, Alexander F. Vakakis, Jean-Claude Golinval, Past, present and future of nonlinear system identification in structural dynamics Mechanical Systems and Signal Processing. ,vol. 20, pp. 505- 592 ,(2006) , 10.1016/J.YMSSP.2005.04.008
Malte Krack, Lars Panning-von Scheidt, Jörg Wallaschek, A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems Journal of Sound and Vibration. ,vol. 332, pp. 6798- 6814 ,(2013) , 10.1016/J.JSV.2013.08.009
Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, Henry H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 903- 995 ,(1998) , 10.1098/RSPA.1998.0193
Marcelo A. Colominas, Gastón Schlotthauer, María E. Torres, An unconstrained optimization approach to empirical mode decomposition Digital Signal Processing. ,vol. 40, pp. 164- 175 ,(2015) , 10.1016/J.DSP.2015.02.013
Yung-Hung Wang, Chien-Hung Yeh, Hsu-Wen Vincent Young, Kun Hu, Men-Tzung Lo, On the computational complexity of the empirical mode decomposition algorithm Physica A-statistical Mechanics and Its Applications. ,vol. 400, pp. 159- 167 ,(2014) , 10.1016/J.PHYSA.2014.01.020