Estimating the Resources for Quantum Computation with the QuRE Toolbox

作者: Martin Suchara , John D Kubiatowicz , Gerardo Paz , Arvin Faruque , Ching-Yi Lai

DOI:

关键词:

摘要: Abstract : This report describes the methodology employed by Quantum Resource Estimator (QuRE) toolbox to quantify resources needed run quantum algorithms on quan- tum computers with realistic properties. The QuRE estimates a number of quantities including physical qubits required specified algorithm, execution time each technologies, probability success computation, as well gate counts breakdown type. Estimates are performed for error-correcting codes representing from both concatenated and topological code families. Our work, which provides these resource cross product seven algorithms, six machine descriptions, several control protocols, four codes, represents most comprehensive estimation effort in field computation date.

参考文章(37)
S. Bravyi, A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) Physical Review A. ,vol. 71, pp. 22316- ,(2005)
Aram W. Harrow, Avinatan Hassidim, Seth Lloyd, Quantum algorithm for linear systems of equations. Physical Review Letters. ,vol. 103, pp. 150502- 150502 ,(2009) , 10.1103/PHYSREVLETT.103.150502
Vwani P. Roychowdhury, Federico M. Spedalieri, Latency in local, two-dimensional, fault-tolerant quantum computing Quantum Information & Computation. ,vol. 9, pp. 666- 682 ,(2009)
Barbara M. Terhal, David P. Divincenzo, Krysta M. Svore, Noise threshold for a fault-tolerant two-dimensional lattice architecture Quantum Information & Computation. ,vol. 7, pp. 297- 318 ,(2007) , 10.5555/2011725.2011727
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Martin Suchara, Gerardo Paz, Todd A. Brun, Ching-Yi Lai, Performance and error analysis of KNILL'S postselection scheme in a two-dimensional architecture Quantum Information & Computation. ,vol. 14, pp. 807- 822 ,(2014) , 10.26421/QIC14.9-10-7
Daniel Gottesman, Panos Aliferis, John Preskill, Quantum accuracy threshold for concatenated distance-3 codes Quantum Information & Computation. ,vol. 6, pp. 97- 165 ,(2006) , 10.26421/QIC6.2-1
M. D. Barrett, Quantum Information Processing with Trapped Ions ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. ,vol. 770, pp. 350- 358 ,(2005) , 10.1063/1.1928869
W J Munro, Kae Nemoto, T P Spiller, S D Barrett, Pieter Kok, R G Beausoleil, Efficient optical quantum information processing Journal of Optics B-quantum and Semiclassical Optics. ,vol. 7, ,(2005) , 10.1088/1464-4266/7/7/002