Prediction for time series in the fraction-of-time probability framework

作者: Jacek Leśkow , Antonio Napolitano

DOI: 10.1016/S0165-1684(02)00334-1

关键词:

摘要: Abstract The aim of this work is to introduce the concept quantile and propose its prediction algorithms using fraction-of-time probability approach. In such an approach, unlike classical one based on stochastic processes, statistical functions concepts are defined starting from a single observed time series instead ensemble realizations process. Two without any distributional assumption proposed. former devoted deal with statistics not depending (stationary case) whereas latter considers that depend (nonstationary case). Convergence estimation accuracy issues considered in paper checking usual mixing assumptions, used Moreover, applications design constant false-alarm rate radar processors analysis real financial data presented.

参考文章(20)
K. Urbanik, Effective processes in the sense of H. Steinhaus Studia Mathematica. ,vol. 17, pp. 335- 348 ,(1958) , 10.4064/SM-17-3-335-348
M. Kac, H. Steinhaus, Sur les fonctions indépendantes (IV) (Intervalle infini) Studia Mathematica. ,vol. 7, pp. 1- 15 ,(1938) , 10.4064/SM-7-1-1-15
Robert Engle, Simone Manganelli, CAViaR: Conditional Value at Risk by Quantile Regression Social Science Research Network. ,(1999) , 10.3386/W7341
Norbert Wiener, A. S. Besicovitch, Almost periodic functions The Mathematical Gazette. ,vol. 16, pp. 275- ,(1932) , 10.2307/3605933
Peter F. Christoffersen, Evaluating Interval Forecasts. International Economic Review. ,vol. 39, pp. 841- 862 ,(1998) , 10.2307/2527341
E. Pfaffelhuber, Generalized harmonic analysis for distributions IEEE Transactions on Information Theory. ,vol. 21, pp. 605- 611 ,(1975) , 10.1109/TIT.1975.1055473
William A. Gardner, William A. Brown, Fraction-of-time probability for time-series that exhibit cyclostationarity Signal Processing. ,vol. 23, pp. 273- 292 ,(1991) , 10.1016/0165-1684(91)90005-4