Conservation Laws in Optimal Control

作者: Delfim F. M. Torres

DOI: 10.1007/3-540-45606-6_20

关键词:

摘要: Conservation laws, i.e. conserved quantities along Euler-Lagrange extremals, which are obtained on the basis of Noether’s theorem, play a prominent role in mathematical analysis and physical applications. In this paper we present general constructive method to obtain Pontryagin extremals optimal control problems, invariant under family transformations that explicitly change all (time, state, control) variables.

参考文章(29)
Vladimir Igorevich Arnolʹd, Métodos matemáticos da mecânica clássica "Mir". ,(1987)
Leonhard Euler, Constantin Carathéodory, Leonhardi Euleri Methodus inveniendi lineas curvas : maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti Auctoriatate et impensis Societatis Scientiarum Naturalium Helveticae , Venditioni exponunt, O. Füssli. ,(1952)
Witold. Respondek, Bronisław. Jakubczyk, Tadeusz. Rzeżuchowski, Geometry in nonlinear control and differential inclusions Banach Center Publications. ,(1995)
D. F. M. Torres, On the Noether theorem for optimal control european control conference. pp. 244- 249 ,(2001) , 10.23919/ECC.2001.7075913
H. Sussmann, Symmetries and integrals of motion in optimal control Banach Center Publications. ,vol. 32, pp. 379- 393 ,(1995) , 10.4064/-32-1-379-393
Lamberto Cesari, Optimization-Theory and Applications ,(1983)
Velimir Jurdjevic, Geometric control theory ,(1996)
V. Jurdjevic, Optimal control, geometry, and mechanics Mathematical control theory. pp. 227- 267 ,(1998) , 10.1007/978-1-4612-1416-8_7