作者: L. Kazantzidis , L. Perivolaropoulos , F. Skara
DOI: 10.1103/PHYSREVD.99.063537
关键词:
摘要: A cosmological observable measured in a range of redshifts can be used as probe set parameters. Given the and parameter, there is an optimum where constrain parameter most effective manner. For other redshift ranges values may degenerate with respect to thus inefficient constraining given parameter. These are blind ranges. We determine observables parameters: matter density $\Omega_m$, equation state $w$ modified gravity $g_a$ which parametrizes evolution Newton's constant. consider observables: growth rate perturbations expressed through $f(z)$ $f\sigma_8$, distance modulus $\mu(z)$, Baryon Acoustic Oscillation $D_V(z) \times \frac{r_s^{fid}}{r_s}$, $H \frac{r_s}{r_s^{fid}}$ $D_A $H(z)$ measurements gravitational wave luminosity distance. introduce new statistic $S_P^O(z)\equiv \frac{\Delta O}{\Delta P}(z) \cdot V_{eff}^{1/2}$, including survey volume $V_{eff}$, measure power $O$ $P$ function $z$. find spots $z_b$ ($S_P^O(z_b)\simeq 0$) optimal $z_s$ ($S_P^O(z_s)\simeq max$) for these parameters $g_a$. $O=f\sigma_8$ $P=(\Omega_{m},w,g_a)$ we at $z_b\simeq(1,2,2.7)$ respectively (sweet) $z_s=(0.5,0.8,1.2)$. Thus probing higher less than lower accuracy.