Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells

作者: Jennifer L. Lamp , Jeremy S. Guest , Sayangdev Naha , Katherine A. Radavich , Nancy G. Love

DOI: 10.1016/J.JPOWSOUR.2011.02.077

关键词:

摘要: Abstract Microbial fuel cells (MFCs) offer a promising alternative energy technology, but suffer from low power densities which hinder their practical applicability. In order to improve anodic density, we deposited carbon nanostructures (CNSs) on an otherwise plain stainless steel mesh (SS-M) anode. Using flame synthesis method that did not require pretreatment of SS-M substrates, were able produce these novel CNS-enhanced (CNS-M) anodes quickly (in matter minutes) and inexpensively, without the added costs chemical pretreatments. During fed batch experiments with biomass anaerobic digesters in single-chamber MFCs, median (based projected surface area) 2.9 mW m −2 187 mW m for MFCs CNS-M anodes, respectively. The addition CNSs anode via deposition therefore resulted 60-fold increase production. combination metallic current collectors holds considerable promise production MFCs.

参考文章(53)
Zhen He, Shelley D. Minteer, Largus T. Angenent, Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell Environmental Science & Technology. ,vol. 39, pp. 5262- 5267 ,(2005) , 10.1021/ES0502876
Karine Bagramyan, Nelli Mnatsakanyan, Armen Trchounian, Formate increases the F0F1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH. Biochemical and Biophysical Research Communications. ,vol. 306, pp. 361- 365 ,(2003) , 10.1016/S0006-291X(03)00967-7
Sayangdev Naha, Swarnendu Sen, Anindya K. De, Ishwar K. Puri, A detailed model for the flame synthesis of carbon nanotubes and nanofibers Proceedings of the Combustion Institute. ,vol. 31, pp. 1821- 1829 ,(2007) , 10.1016/J.PROCI.2006.07.224
Bruce E. Logan, Bert Hamelers, René Rozendal, Uwe Schröder, Jürg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraete, Korneel Rabaey, Microbial Fuel Cells: Methodology and Technology† Environmental Science & Technology. ,vol. 40, pp. 5181- 5192 ,(2006) , 10.1021/ES0605016
H. Schulz, M. Leonhardt, H.-J. Scheibe, B. Schultrich, Ultra hydrophobic wetting behaviour of amorphous carbon films Surface & Coatings Technology. ,vol. 200, pp. 1123- 1126 ,(2005) , 10.1016/J.SURFCOAT.2005.02.019
Hansan Liu, Chaojie Song, Lei Zhang, Jiujun Zhang, Haijiang Wang, David P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell Journal of Power Sources. ,vol. 155, pp. 95- 110 ,(2006) , 10.1016/J.JPOWSOUR.2006.01.030
Liming Yuan, Kozo Saito, Wenchong Hu, Zhi Chen, Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes Chemical Physics Letters. ,vol. 346, pp. 23- 28 ,(2001) , 10.1016/S0009-2614(01)00959-9
Shijie You, Qingliang Zhao, Jinna Zhang, Junqiu Jiang, Chunli Wan, Maoan Du, Shiqi Zhao, A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions Journal of Power Sources. ,vol. 173, pp. 172- 177 ,(2007) , 10.1016/J.JPOWSOUR.2007.07.063
Cuijie Feng, Subed Chandra Dev Sharma, Chang-Ping Yu, Microbial fuel cells for wastewater treatment Water Science and Technology. ,vol. 54, pp. 9- 15 ,(2006) , 10.2166/WST.2006.702
Hung-Yin Tsai, Chen-Chang Wu, Chi-Yuan Lee, Eric Pierre Shih, Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes Journal of Power Sources. ,vol. 194, pp. 199- 205 ,(2009) , 10.1016/J.JPOWSOUR.2009.05.018