δ-function Bose-gas picture of S = 1 antiferromagnetic quantum spin chains near critical fields

作者: Kouichi Okunishi , Yasuhiro Hieida , Yasuhiro Akutsu

DOI: 10.1103/PHYSREVB.59.6806

关键词:

摘要: We study the zero-temperature magnetization curve $(M\ensuremath{-}H$ curve) of one-dimensional quantum antiferromagnet spin one. The Hamiltonian H we consider is bilinear-biquadratic form: $H={\ensuremath{\sum}}_{i}f({s}_{i}\ensuremath{\cdot}{s}_{i+1})$ (+Zeeman term) where ${s}_{i}$ operator at site i and $f(X)=X+\ensuremath{\beta}{X}^{2}$ with $0l~\ensuremath{\beta}l1.$ focus on validity $\ensuremath{\delta}$-function Bose-gas picture near two critical fields: upper-critical field ${H}_{s}$ above which saturates lower-critical ${H}_{c}$ associated Haldane gap. As for behavior ${H}_{s},$ take ``low-energy effective S matrix'' approach, correct coupling constant c extracted from down-spin matrix in its low-energy limit. find that resulting value differs spin-wave value. draw $M\ensuremath{-}H$ by using resultant Bose gas, compare it numerical calculation product-wave-function renormalization-group (PWFRG) method, a variant White's density-matrix renormalization group employed. Excellent agreement seen between PWFRG correctly mapped calculation. also test ${H}_{c}.$ Comparing PWFRG-calculated curves prediction, there are distinct regions, I II, $\ensuremath{\beta}$ separated ${\ensuremath{\beta}}_{c}(\ensuremath{\approx}0.41).$ In region I, $0l\ensuremath{\beta}l{\ensuremath{\beta}}_{c},$ positive but rather small. small makes ``critical region'' square-root $M\ensuremath{\sim}\sqrt{H\ensuremath{-}{H}_{c}}$ very narrow. Further, $\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\beta}}{\ensuremath{\beta}}_{c}\ensuremath{-}0,$ transmutes to different one, $M\ensuremath{\sim}(H\ensuremath{-}{H}_{c}{)}^{\ensuremath{\theta}}$ $\ensuremath{\theta}\ensuremath{\approx}1/4.$ ${\ensuremath{\beta}}_{c}l\ensuremath{\beta}l1,$ more pronounced as compared becomes negative.

参考文章(41)
K. Katsumata, H. Hori, T. Takeuchi, M. Date, A. Yamagishi, J. P. Renard, Magnetization process of anS=1linear-chain Heisenberg antiferromagnet Physical Review Letters. ,vol. 63, pp. 86- 88 ,(1989) , 10.1103/PHYSREVLETT.63.86
Yoshitami Ajiro, Tsuneaki Goto, Hikomitsu Kikuchi, Toshiro Sakakibara, Toshiya Inami, High-field magnetization of a quasi-one-dimensional S=1 antiferromagnet Ni( C 2 H 8 N 2 ) 2 NO 2 ( ClO 4 : Observation of the Haldane gap Physical Review Letters. ,vol. 63, pp. 1424- 1427 ,(1989) , 10.1103/PHYSREVLETT.63.1424
Tetsuya Takeuchi, Hidenobu Hori, Taturu Yosida, Akio Yamagishi, Koichi Katsumata, Jean-Pierre Renard, Véronique Gadet, Michel Verdaguer, Muneyuki Date, Magnetization Process of Haldane Materials TMNIN and NINAZ Journal of the Physical Society of Japan. ,vol. 61, pp. 3262- 3266 ,(1992) , 10.1143/JPSJ.61.3262
Shosuke Sasaki, Solvable models of spin-1/2 chains with an energy gap Physical Review E. ,vol. 53, pp. 168- 178 ,(1996) , 10.1103/PHYSREVE.53.168
Takashi Tonegawa, Takeshi Nakao, Makoto Kaburagi, Ground-State Phase Diagram and Magnetization Curves of the Spin-1 Antiferromagnetic Heisenberg Chain with Bond Alternation and Uniaxial Single-Ion-Type Anisotropy Journal of the Physical Society of Japan. ,vol. 65, pp. 3317- 3330 ,(1996) , 10.1143/JPSJ.65.3317
Keisuke Totsuka, Magnetization processes in bond-alternating quantum spin chains☆ Physics Letters A. ,vol. 228, pp. 103- 110 ,(1997) , 10.1016/S0375-9601(97)00087-X
Masaki Oshikawa, Masanori Yamanaka, Ian Affleck, Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins Physical Review Letters. ,vol. 78, pp. 1984- 1987 ,(1997) , 10.1103/PHYSREVLETT.78.1984
Yasuhiro Hieida, Kouichi Okunishi, Yasuhiro Akutsu, MAGNETIZATION PROCESS OF A ONE-DIMENSIONAL QUANTUM ANTIFERROMAGNET : THE PRODUCT-WAVE-FUNCTION RENORMALIZATION GROUP APPROACH Physics Letters A. ,vol. 233, pp. 464- 470 ,(1997) , 10.1016/S0375-9601(97)00498-2