An explicit derivation of discretely shaped Beta-spline basis functions of arbitrary order

作者: Gadiel Seroussi , Brian A. Barsky

DOI: 10.1016/B978-0-12-460510-7.50048-3

关键词:

摘要: Beta-splines are a class of splines with applications in the construction curves and surfaces for computer-aided geometric design. One salient features Beta-spline is that thus constructed geometrically continuous , more general notion continuity than one used ordinary B-splines. The basic building block order k set Beta-polynomials degree – 1, which to form basis functions. coefficients functions certain shape parameters β s ; i . In this paper, we present symbolic derivation as polynomials over field K n real rational indeterminates We show, constructively, existence uniqueness satisfying design objectives continuity, minimum spline order, invariance under translation, linear independence, an explicit procedure their computation. presented here, resulting procedure, valid case discretely-shaped arbitrary uniform knot sequences. By extending z representing lengths parametric intervals, result can be generalized non-uniform sequences, shown Seroussi & Barsky (1991).

参考文章(16)
Gadiel Seroussi, Brian A. Barsky, A Symbolic Derivation of Beta-splines of Arbitrary Order University of California at Berkeley. ,(1991)
R.N. Goldman, B.A. Barsky, On beta-continuous functions and their application to the construction of geometrically continuous curves and surfaces Mathematical methods in computer aided geometric design. pp. 299- 311 ,(1989) , 10.1016/B978-0-12-460515-2.50025-1
Nira Dyn, Charles A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves Numerische Mathematik. ,vol. 54, pp. 319- 337 ,(1989) , 10.1007/BF01396765
Abraham Lempel, Gadiel Seroussi, Systematic derivation of spline bases Computer Aided Geometric Design. ,vol. 9, pp. 349- 363 ,(1992) , 10.1016/0167-8396(92)90029-O
T.N.T. Goodman, K. Unsworth, Manipulating Shape and Producing Geometuic Contnuity in ß-Spline Curves IEEE Computer Graphics and Applications. ,vol. 6, pp. 50- 56 ,(1986) , 10.1109/MCG.1986.276692
T.N.T Goodman, Properties of β-splines Journal of Approximation Theory. ,vol. 44, pp. 132- 153 ,(1985) , 10.1016/0021-9045(85)90076-0
G. Geise, Über berührende Kegelschnitte einer ebenen Kurve ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 42, pp. 297- 304 ,(1962) , 10.1002/ZAMM.19620420704
Carl de Boor, On calculating with B-splines Journal of Approximation Theory. ,vol. 6, pp. 50- 62 ,(1972) , 10.1016/0021-9045(72)90080-9