Phase Fluctuation and Damping in Two-Level Optical Resonance

作者: David Cohen , Lloyd W. Hillman

DOI: 10.1007/978-1-4613-0847-8_34

关键词:

摘要: The interaction of a monochromatic optical field with two-level atomic resonance is one the basic problems in quantum optics. For closed system, we can describe dynamics Bloch equations:1 $$\dot u = - \tilde \Delta v \frac{1}{{{{T'}_2}}}u$$ (1) $$\dot + \kappa \varepsilon w \frac{1}{{{{T'}_2}}}v$$ (2) $$\dot \frac{1}{{{T_1}}}\left( {w 1} \right).$$ (3)

参考文章(7)
L. Allen, Joseph H. Eberly, Optical resonance and two-level atoms ,(1975)
P. R. Berman, R. G. Brewer, Modified Optical Bloch Equations for Solids Physical Review A. ,vol. 32, pp. 2784- 2796 ,(1985) , 10.1103/PHYSREVA.32.2784
Ralph G. DeVoe, Richard G. Brewer, Experimental Test of the Optical Bloch Equations for Solids Physical Review Letters. ,vol. 50, pp. 1269- 1272 ,(1983) , 10.1103/PHYSREVLETT.50.1269
S. Singh, G. S. Agarwal, Four-wave mixing under conditions when optical Bloch equations fail Journal of The Optical Society of America B-optical Physics. ,vol. 5, pp. 254- 258 ,(1988) , 10.1364/JOSAB.5.000254
A. Szabo, T. Muramoto, Experimental test of the optical Bloch equations for solids using free-induction decay. Physical Review A. ,vol. 39, pp. 3992- 3997 ,(1989) , 10.1103/PHYSREVA.39.3992
Motoomi Yamanoi, J. H. Eberly, Relaxation terms for strong-field optical Bloch equations Journal of The Optical Society of America B-optical Physics. ,vol. 1, pp. 751- 755 ,(1984) , 10.1364/JOSAB.1.000751