Metric structures in ordinal data

作者: Roger N. Shepard

DOI: 10.1016/0022-2496(66)90017-4

关键词:

摘要: Abstract Under appropriate conditions, data merely about the ordering of objects—or separations between objects—is sometimes sufficient to fix positions those objects on an essentially numerical scale. This paper uses both mathematical and “Monte Carlo” results establish clarify possibility thus extracting metric information from purely ordinal for two multidimensional cases: (a) analysis proximities, in which one is given a single rank order all n(n−1) 2 pairs n with respect psychological similarity or “proximity”; (b) nonmetric factor analysis, different individual each m attributes. As (and m) increase, are found determine spatial representation more nearly within general transformation, case affine analysis. Extensions these other cases also considered.

参考文章(44)
J. B. Kruskal, Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 27, pp. 251- 263 ,(1965) , 10.1111/J.2517-6161.1965.TB01492.X
R. Duncan Luce, Eugene Galanter, Robert R. Bush, Handbook of mathematical psychology: I. John Wiley. ,(1963)
E. T. Klemmer, N. W. Shrimpton, PREFERENCE SCALING VIA A MODIFICATION OF SHEPARD'S PROXIMITY ANALYSIS METHOD. Human Factors. ,vol. 5, pp. 163- 168 ,(1963) , 10.1177/001872086300500207
Harry Horace Harman, Modern factor analysis ,(1960)
Stanley Smith Stevens, Handbook of experimental psychology ,(1951)
Clyde H. Coombs, Richard C. Kao, On a connection between factor analysis and multidimensional unfolding Psychometrika. ,vol. 25, pp. 219- 231 ,(1960) , 10.1007/BF02289726
J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method Psychometrika. ,vol. 29, pp. 115- 129 ,(1964) , 10.1007/BF02289694
Sidney Siegel, A method for obtaining an ordered metric scale Psychometrika. ,vol. 21, pp. 207- 216 ,(1956) , 10.1007/BF02289100