Bounds on skyline probability for databases with uncertain preferences

作者: Arun K. Pujari , Vineet Padmanabhan , Venkateswara Rao Kagita

DOI: 10.1016/J.IJAR.2016.09.004

关键词:

摘要: For determining skyline objects for an uncertain database with preferences, it is necessary to compute the probability of a given object respect other objects. The problem boils down computing union events from probabilities all possible joint probabilities. Linear Bonferroni bound concerned bounds on partial information. We use this technique estimate and propose polynomial-time algorithm sharp upper bound. show that information does not affect quality solution but helps in improving efficiency. formulate as Programming Problem (LPP) characterize set feasible points believed contain extreme LPP. maximization objective function over equivalent bi-polar quadratic optimization problem. spectral relaxation solve proposed O ( n 3 ) time complexity first ever determine probability. computed by our almost same deterministic algorithm. Experimental results are presented corroborate claim. In paper we three different probability.Computation using these more accurate than earlier sampling based technique.Our determines exact method.We validate hypothesis experiments real synthetic datasets.

参考文章(35)
James P. Callan, Kevyn Collins-Thompson, A Language Modeling Approach to Predicting Reading Difficulty. north american chapter of the association for computational linguistics. pp. 193- 200 ,(2004)
Arun K. Pujari, Venkateswara Rao Kagita, Anubhuti Garg, Vineet Padmanabhan, Bi-directional Search for Skyline Probability Algorithms and Discrete Applied Mathematics. pp. 250- 261 ,(2015) , 10.1007/978-3-319-14974-5_24
Maurice Fréchet, Généralisation du théorème des probabilités totales Fundamenta Mathematicae. ,vol. 25, pp. 379- 387 ,(1935) , 10.4064/FM-25-1-379-387
Arun K. Pujari, Venkateswara Rao Kagita, Anubhuti Garg, Vineet Padmanabhan, Efficient computation for probabilistic skyline over uncertain preferences Information Sciences. ,vol. 324, pp. 146- 162 ,(2015) , 10.1016/J.INS.2015.06.041
Milton Sobel, V. R. R. Uppuluri, On Bonferroni-Type Inequalities of the Same Degree for the Probability of Unions and Intersections Annals of Mathematical Statistics. ,vol. 43, pp. 1549- 1558 ,(1972) , 10.1214/AOMS/1177692387
H. Kuai, F. Alajaji, G. Takahara, A lower bound on the probability of a finite union of events Discrete Mathematics. ,vol. 215, pp. 147- 158 ,(2000) , 10.1016/S0012-365X(99)00246-0
D. A. Dawson, D. Sankoff, AN INEQUALITY FOR PROBABILITIES Proceedings of the American Mathematical Society. ,vol. 18, pp. 504- 507 ,(1967) , 10.1090/S0002-9939-1967-0211424-0
Nurul Husna Mohd Saad, Hamidah Ibrahim, Ali Amer Alwan, Fatimah Sidi, Razali Yaakob, A framework for evaluating skyline query over uncertain autonomous databases international conference on conceptual structures. ,vol. 29, pp. 1546- 1556 ,(2014) , 10.1016/J.PROCS.2014.05.140
Eustratios G. Kounias, Bounds for the Probability of a Union, with Applications Annals of Mathematical Statistics. ,vol. 39, pp. 2154- 2158 ,(1968) , 10.1214/AOMS/1177698049
Stratis Kounias, Jacqueline Marin, Best Linear Bonferroni Bounds Siam Journal on Applied Mathematics. ,vol. 30, pp. 307- 323 ,(1976) , 10.1137/0130031