Geometric Phase and Superconducting Flux Quantization

作者: Sandip S. Pakvasa , Walter A. Simmons

DOI:

关键词:

摘要: In a ring of s-wave superconducting material the magnetic flux is quantized in units $\Phi_0 = \frac{h}{2e}$. It well known from theory Josephson junctions that if interrupted with piece d-wave material, then one-half those due to additional phase shift $\pi$. We reinterpret this phenomenon terms geometric phase. We consider an idealized hetero-junction superconductor pure and electron pairs. find, for configuration, $\pi$ follows discontinuity thus fundamental consequence quantum mechanics.

参考文章(13)
L. N. Bulaevskiǐ, A. A. Sobyanin, V. V. Kuziǐ, Superconducting system with weak coupling to the current in the ground state Jetp Letters. ,vol. 25, pp. 290- ,(1977)
Giuseppe Falci, Rosario Fazio, G. Massimo Palma, Jens Siewert, Vlatko Vedral, Detection of geometric phases in superconducting nanocircuits Nature. ,vol. 407, pp. 355- 358 ,(2000) , 10.1038/35030052
Michael L. Kagan, Thomas B. Kepler, Irving R. Epstein, Geometric phase shifts in chemical oscillators. Nature. ,vol. 349, pp. 506- 508 ,(1991) , 10.1038/349506A0
J. Zak, Berry’s phase for energy bands in solids Physical Review Letters. ,vol. 62, pp. 2747- 2750 ,(1989) , 10.1103/PHYSREVLETT.62.2747
C. Alden Mead, The geometric phase in molecular systems Reviews of Modern Physics. ,vol. 64, pp. 51- 85 ,(1992) , 10.1103/REVMODPHYS.64.51
Jeeva S. Anandan, Arun K. Pati, Geometry of the Josephson effect Physics Letters A. ,vol. 231, pp. 29- 37 ,(1997) , 10.1016/S0375-9601(97)00290-9
Raffaele Resta, Manifestations of Berry's phase in molecules and condensed matter Journal of Physics: Condensed Matter. ,vol. 12, ,(2000) , 10.1088/0953-8984/12/9/201
N. Mukunda, Arvind, E. Ercolessi, G. Marmo, G. Morandi, R. Simon, Bargmann invariants, null phase curves, and a theory of the geometric phase Physical Review A. ,vol. 67, pp. 042114- ,(2003) , 10.1103/PHYSREVA.67.042114
Jeeva Anandan, The geometric phase Nature. ,vol. 360, pp. 307- 313 ,(1992) , 10.1038/360307A0
R. Simon, N. Mukunda, Bargmann invariant and the geometry of the Güoy effect. Physical Review Letters. ,vol. 70, pp. 880- 883 ,(1993) , 10.1103/PHYSREVLETT.70.880