How to avoid a perfunctory sensitivity analysis

作者: Andrea Saltelli , Paola Annoni

DOI: 10.1016/J.ENVSOFT.2010.04.012

关键词:

摘要: Mathematical modelers from different disciplines and regulatory agencies worldwide agree on the importance of a careful sensitivity analysis (SA) model-based inference. The most popular SA practice seen in literature is that 'one-factor-at-a-time' (OAT). This consists analyzing effect varying one model input factor at time while keeping all other fixed. While shortcomings OAT are known statistical literature, its widespread use among raises concern quality associated analyses. present paper introduces novel geometric proof inefficiency OAT, with purpose providing modeling community convincing possibly definitive argument against OAT. Alternatives to indicated which based theory, drawing experimental design, regression proper.

参考文章(71)
Dan G. Cacuci, Mihaela Ionescu-Bujor, A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II: Statistical Methods Nuclear Science and Engineering. ,vol. 147, pp. 189- 203 ,(2004) , 10.13182/04-54CR
Hubert Varella, Martine Guérif, Samuel Buis, Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model Environmental Modelling and Software. ,vol. 25, pp. 310- 319 ,(2010) , 10.1016/J.ENVSOFT.2009.09.012
James M Murphy, David MH Sexton, David N Barnett, Gareth S Jones, Mark J Webb, Matthew Collins, David A Stainforth, Quantification of modelling uncertainties in a large ensemble of climate change simulations Nature. ,vol. 430, pp. 768- 772 ,(2004) , 10.1038/NATURE02771
Andrea Saltelli, Stefano Tarantola, On the relative importance of input factors in mathematical models: Safety assessment for nuclear waste disposal Journal of the American Statistical Association. ,vol. 97, pp. 702- 709 ,(2002) , 10.1198/016214502388618447
S. Kucherenko, M. Rodriguez-Fernandez, C. Pantelides, N. Shah, Monte Carlo evaluation of derivative-based global sensitivity measures Reliability Engineering & System Safety. ,vol. 94, pp. 1135- 1148 ,(2009) , 10.1016/J.RESS.2008.05.006
E. C. Stites, P. C. Trampont, Z. Ma, K. S. Ravichandran, Network Analysis of Oncogenic Ras Activation in Cancer Science. ,vol. 318, pp. 463- 467 ,(2007) , 10.1126/SCIENCE.1144642
Roberto Confalonieri, Gianni Bellocchi, Stefano Tarantola, Marco Acutis, Marcello Donatelli, Giampiero Genovese, Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters Environmental Modelling and Software. ,vol. 25, pp. 479- 488 ,(2010) , 10.1016/J.ENVSOFT.2009.10.005
A HOF, M DENELZEN, D VANVUUREN, Analysing the costs and benefits of climate policy: Value judgements and scientific uncertainties Global Environmental Change-human and Policy Dimensions. ,vol. 18, pp. 412- 424 ,(2008) , 10.1016/J.GLOENVCHA.2008.04.004
Anssi Ahtikoski, Jani Heikkilä, Virpi Alenius, Matti Siren, Economic viability of utilizing biomass energy from young stands—The case of Finland Biomass & Bioenergy. ,vol. 32, pp. 988- 996 ,(2008) , 10.1016/J.BIOMBIOE.2008.01.022
Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, Stefano Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index Computer Physics Communications. ,vol. 181, pp. 259- 270 ,(2010) , 10.1016/J.CPC.2009.09.018