Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States

作者: Andrew J. Newman , Martyn P. Clark , Jason Craig , Bart Nijssen , Andrew Wood

DOI: 10.1175/JHM-D-15-0026.1

关键词:

摘要: AbstractGridded precipitation and temperature products are inherently uncertain because of myriad factors, including interpolation from a sparse observation network, measurement representativeness, errors. Generally uncertainty is not explicitly accounted for in gridded or temperature; if it represented, often included an ad hoc manner. A lack quantitative estimates hydrometeorological forcing fields limits the application advanced data assimilation systems other tools land surface hydrologic modeling. This study develops gridded, observation-based ensemble at daily increment period 1980–2012 conterminous United States, northern Mexico, southern Canada. allows estimation modeling through use variance. Statistical verification indicates ...

参考文章(79)
Glenn W. Brier, William H. Best, Hans A. Panofsky, Some applications of statistics to meteorology ,(1958)
Naoki Mizukami, Martyn P. Clark, Ethan D. Gutmann, Pablo A. Mendoza, Andrew J. Newman, Bart Nijssen, Ben Livneh, Lauren E. Hay, Jeffrey R. Arnold, Levi D. Brekke, Implications of the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic Models Journal of Hydrometeorology. ,vol. 17, pp. 73- 98 ,(2016) , 10.1175/JHM-D-14-0187.1
Dmitri Kavetski, Stewart W. Franks, George Kuczera, Confronting input uncertainty in environmental modelling Water Science and Application. pp. 49- 68 ,(2003) , 10.1029/WS006P0049
Seyed Hamed Alemohammad, Characterization of uncertainty in remotely-sensed precipitation estimates Massachusetts Institute of Technology. ,(2015)
Donald S. Shepard, Computer Mapping: The SYMAP Interpolation Algorithm Springer, Dordrecht. pp. 133- 145 ,(1984) , 10.1007/978-94-017-3048-8_7
Ramesh S. V. Teegavarapu, Statistical corrections of spatially interpolated missing precipitation data estimates Hydrological Processes. ,vol. 28, pp. 3789- 3808 ,(2014) , 10.1002/HYP.9906
Hamid Moradkhani, Kuo‐Lin Hsu, Hoshin Gupta, Soroosh Sorooshian, None, Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter Water Resources Research. ,vol. 41, pp. 1- 17 ,(2005) , 10.1029/2004WR003604
Yudong Tian, George J. Huffman, Robert F. Adler, Ling Tang, Mathew Sapiano, Viviana Maggioni, Huan Wu, Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophysical Research Letters. ,vol. 40, pp. 2060- 2065 ,(2013) , 10.1002/GRL.50320
Peter Bauer, Jean‐FrançOis Mahfouf, William S Olson, Frank S Marzano, Sabatino Di Michele, Alessandra Tassa, Alberto Mugnai, None, Error analysis of TMI rainfall estimates over ocean for variational data assimilation Quarterly Journal of the Royal Meteorological Society. ,vol. 128, pp. 2129- 2144 ,(2002) , 10.1256/003590002320603575
Christopher Daly, Michael Halbleib, Joseph I. Smith, Wayne P. Gibson, Matthew K. Doggett, George H. Taylor, Jan Curtis, Phillip P. Pasteris, Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States International Journal of Climatology. ,vol. 28, pp. 2031- 2064 ,(2008) , 10.1002/JOC.1688