Multitemporal fraction images derived from Terra MODIS data for analysing land cover change over the Amazon region

作者: L. O. Anderson , Y. E. Shimabukuro , E. Arai

DOI: 10.1080/01431160310001620795

关键词:

摘要: L. O. ANDERSON*, Y. E. SHIMABUKURO and ARAIInstituto Nacional de Pesquisas Espaciais, Divisao Sensoriamento Remoto, Av. dosAstronautas, 1758, CEP 12227-010, Sao Jose dos Campos, SP, BrazilThe Moderate Resolution Imaging Spectroradiometer (MODIS) instrtimentonboard Earth Observing System (EOS) Terra plataform has been designed toprovide improved information for monitoring land, ocean, atmosphereconditions. The design combined characteristics oi' the Advanced Very HighResolution Radiometer (AVHRR) Landsat Thematic Mapper (TM),adding spectral channels in middle thermal infrared wavelength andproviding data 250 m. 500 m 1 km spatial resolutions. Spectral forattnospheric cloud characterization have included to permit both theremoval of atmospheric effects on surface observations provision ofatmospheric measurements (Justice et al. 1998). This work utilized land productM0D13Q1, which is a vegetation index product with 250m resolution isa composite 16 days observation over Mato Grosso State (figure 1). Thisproduct contains NDVI (Normalized Difference VegetationIndex), EVI (Enhanced Vegetation Index), red reflectance band {250m spatialresolution, 620-670 nm bandwidth), near (250 841-876 blue (500 resolution,rearranged 250m, 459-479nm medium band(500m resolution, rearranged 2105-2155nm qualityassurance EVI. view zenith angle, sun relativeazimuth angle average parameters (Lozar Balbach 2002). composites ofNDVI were performed using Constrained View Maximum ValueComposite (CV-MVC) algorithm.The pixel moderate sensor images, due its resolution,generally includes more than one type terrain cover. When these sensors observethe Earth, measured radiance integration all objectsthat are contained within pixel, implying existence so-called mixtureproblem (Aguiar el 1999). linear mixing model used analyse themixture signatures vegetation, soil, shade each either high(Airborne Visible/Infrared Spectrometer (AVIRIS). TM, etc.) coarse(AVHRR Systeme Pour l'Observation la Terre (SPOT-Vegetation))resolution data. available methods estimate proportion componentinside by minimizing sum squares errors. proportionvalues must be non-negative, they also equal (Shimabukuro Smith1991). In this work, we accept that it possible find pure pixels cover typein data, purest soil,and endmembers can seen figure 2. For coming investigate*Corresponding author. Email: liana@ltid.inpe.br

参考文章(7)
Harold E. Balbach, Robert C. Lozar, NASA MODIS Products For Military Land Monitoring and Management AGU Fall Meeting Abstracts. ,vol. 2002, ,(2002)
J. M. B. Carreiras, Y. E. Shimabukuro, J. M. C. Pereira, Fraction images derived from SPOT-4 VEGETATION data to assess land-cover change over the State of Mato Grosso, Brazil International Journal of Remote Sensing. ,vol. 23, pp. 4979- 4983 ,(2002) , 10.1080/0143116021000016743
Yosio E. Shimabukuro, James A. Smith, Fraction Images Derived from Landsat TM and MSS Data for Monitoring Reforested Areas Canadian Journal of Remote Sensing. ,vol. 21, pp. 67- 74 ,(1995) , 10.1080/07038992.1995.10874599
APD Aguiar, YE Shimabukuro, NDA Mascarenhas, Use of synthetic bands derived from mixing models in the multispectral classification of remote sensing images International Journal of Remote Sensing. ,vol. 20, pp. 647- 657 ,(1999) , 10.1080/014311699213118
Y.E. Shimabukuro, J.A. Smith, The least-squares mixing models to generate fraction images derived from remote sensing multispectral data IEEE Transactions on Geoscience and Remote Sensing. ,vol. 29, pp. 16- 20 ,(1991) , 10.1109/36.103288
C.O. Justice, E. Vermote, J.R.G. Townshend, R. Defries, D.P. Roy, D.K. Hall, V.V. Salomonson, J.L. Privette, G. Riggs, A. Strahler, W. Lucht, R.B. Myneni, Y. Knyazikhin, S.W. Running, R.R. Nemani, Zhengming Wan, A.R. Huete, W. van Leeuwen, R.E. Wolfe, L. Giglio, J. Muller, P. Lewis, M.J. Barnsley, The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research IEEE Transactions on Geoscience and Remote Sensing. ,vol. 36, pp. 1228- 1249 ,(1998) , 10.1109/36.701075
BRENT N. HOLBEN, YOSIO E. SHIMABUKURO, Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors International Journal of Remote Sensing. ,vol. 14, pp. 2231- 2240 ,(1993) , 10.1080/01431169308954032