Smooth functional tempering for nonlinear differential equation models

作者: David Campbell , Russell J. Steele

DOI: 10.1007/S11222-011-9234-3

关键词:

摘要: Differential equations are used in modeling diverse system behaviors a wide variety of sciences. Methods for estimating the differential equation parameters traditionally depend on inclusion initial states and numerically solving equations. This paper presents Smooth Functional Tempering, new population Markov Chain Monte Carlo approach posterior estimation parameters. The proposed method borrows insights from parallel tempering model based smoothing to define sequence approximations posterior. tempered relaxations solution model, reducing need obtaining numerical solution. Rather than via that more heavily rooted prior, this tempers towards data features. Using our approach, we observed faster convergence robustness both values prior distributions do not reflect features data. Two variations their performance is examined through simulation studies real application chemical reaction dynamics producing nylon.

参考文章(59)
Eberhard O. Voit, Michael A. Savegeau, Power-Low Approach to Modelng Biological Systems : III. Methods of Analysis Journal of Fermentation Technology. ,vol. 60, pp. 233- 241 ,(1982)
Folkmar Bornemann, Peter Deuflhard, Scientific Computing with Ordinary Differential Equations ,(2002)
William R Esposito, Christodoulos A Floudas, Deterministic Global Optimization in Nonlinear Optimal Control Problems Journal of Global Optimization. ,vol. 17, pp. 97- 126 ,(2000) , 10.1023/A:1026578104213
Charles J. Geyer, Markov Chain Monte Carlo Maximum Likelihood Interface Foundation of North America. ,(1991)
J. O. Ramsay, G. Hooker, D. Campbell, J. Cao, Parameter estimation for differential equations: a generalized smoothing approach Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 69, pp. 741- 796 ,(2007) , 10.1111/J.1467-9868.2007.00610.X
Adrian E. Raftery, Steven Lewis, How Many Iterations in the Gibbs Sampler Defense Technical Information Center. ,(1991) , 10.21236/ADA640705
Jun S. Liu, Yves F. Atchade, The Wang-Landau algorithm in general state spaces: Applications and convergence analysis Statistica Sinica. ,vol. 20, pp. 209- 233 ,(2010)
Faming Liang, Wing Hung Wong, Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models Journal of the American Statistical Association. ,vol. 96, pp. 653- 666 ,(2001) , 10.1198/016214501753168325
Paul H. C. Eilers, A Perfect Smoother Analytical Chemistry. ,vol. 75, pp. 3631- 3636 ,(2003) , 10.1021/AC034173T
Jon Wakefield, James Bennett, The Bayesian modeling of covariates for population pharmacokinetic models Journal of the American Statistical Association. ,vol. 91, pp. 917- 927 ,(1996) , 10.1080/01621459.1996.10476961