DASyR(IR) - document analysis system for systematic reviews (in Information Retrieval)

作者: Florina Piroi , Aldo Lipani , Mihai Lupu , Allan Hanbury

DOI: 10.1109/ICDAR.2015.7333830

关键词:

摘要: Creating systematic reviews is a painstaking task undertaken especially in domains where experimental results are the primary method to knowledge creation. For review authors, analysing documents extract relevant data demanding activity. To support creation of reviews, we have created DASyR—a semi-automatic document analysis system. DASyR our solution annotating published papers for purpose ontology population. dictionaries not existing or inadequate, relies on annotation bootstrapping based positional Random Indexing, followed by traditional Machine Learning algorithms extend set. We provide an example application subdomain Computer Science, Information Retrieval evaluation domain. The reliance this domain large scale studies makes it perfect test on. show utility through different parameter values bootstrap procedure, evaluated terms annotator agreement, error rate, precision and recall.

参考文章(24)
Aldo Lipani, Florina Piroi, Linda Andersson, Allan Hanbury, An Information Retrieval Ontology for Information Retrieval Nanopublications cross language evaluation forum. pp. 44- 49 ,(2014) , 10.1007/978-3-319-11382-1_5
Nicola Ferro, Gianmaria Silvello, CLEF 15th Birthday: What Can We Learn From Ad Hoc Retrieval? cross language evaluation forum. pp. 31- 43 ,(2014) , 10.1007/978-3-319-11382-1_4
Theodora Tsikrika, Alba G. Seco de Herrera, Henning Müller, Assessing the scholarly impact of imageCLEF cross language evaluation forum. pp. 95- 106 ,(2011) , 10.1007/978-3-642-23708-9_12
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Ian Shemilt, Antonia Simon, Gareth J. Hollands, Theresa M. Marteau, David Ogilvie, Alison O'Mara‐Eves, Michael P. Kelly, James Thomas, Pinpointing needles in giant haystacks: use of text mining to reduce impractical screening workload in extremely large scoping reviews Research Synthesis Methods. ,vol. 5, pp. 31- 49 ,(2014) , 10.1002/JRSM.1093
L. A. Ramshaw, M. P. Marcus, Text Chunking Using Transformation-Based Learning meeting of the association for computational linguistics. pp. 157- 176 ,(1999) , 10.1007/978-94-017-2390-9_10
Donna Harman, How effective is suffixing Journal of the Association for Information Science and Technology. ,vol. 42, pp. 7- 15 ,(1991) , 10.1002/(SICI)1097-4571(199101)42:1<7::AID-ASI2>3.0.CO;2-P
James Thomas, David Gough, Sandy Oliver, An Introduction to Systematic Reviews ,(2017)