The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data

作者: Andrew Fox , Mathew Williams , Andrew D. Richardson , David Cameron , Jeffrey H. Gove

DOI: 10.1016/J.AGRFORMET.2009.05.002

关键词:

摘要: We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured fluxes and states simple C model. Participants were provided the synthetic net ecosystem exchange (NEE) of CO2 leaf area index (LAI) data, generated from added noise, observed NEE LAI data two eddy covariance sites. endeavoured to estimate all cases over years provided, generate predictions one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters genetic algorithm. For case, parameter estimates well true values. The analyses indicated that linked directly gross primary production (GPP) respiration, such as those related foliage allocation turnover, or temperature sensitivity heterotrophic best constrained characterised. Poorly estimated turnover fine root/wood pools. Estimates confidence intervals varied among but several successfully located values annual experiments within relatively narrow 90% intervals, achieving >80% success rate mean <110 gC m−2 year−1 case. Annual flux by generally agreed gap-filling approaches half-hourly data. estimation respiration GPP through MDF outputs partitioning studies Confidence limits on increased an average 88% in prediction previous year, when available. 30% used instead reflecting quantifying addition error. Finally, our incorporating constraints, pools (wood, soil roots) would help reduce uncertainties poorly served

参考文章(43)
Sue Ellen Haupt, Randy L. Haupt, Practical Genetic Algorithms ,(2004)
Jasper A Vrugt, Hoshin V Gupta, Willem Bouten, Soroosh Sorooshian, None, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters Water Resources Research. ,vol. 39, pp. 1201- ,(2003) , 10.1029/2002WR001642
Martin Heimann, Markus Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks Nature. ,vol. 451, pp. 289- 292 ,(2008) , 10.1038/NATURE06591
Bobby H. Braswell, William J. Sacks, Ernst Linder, David S. Schimel, Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations Global Change Biology. ,vol. 11, pp. 335- 355 ,(2005) , 10.1111/J.1365-2486.2005.00897.X
S. SITCH, C. HUNTINGFORD, N. GEDNEY, P. E. LEVY, M. LOMAS, S. L. PIAO, R. BETTS, P. CIAIS, P. COX, P. FRIEDLINGSTEIN, C. D. JONES, I. C. PRENTICE, F. I. WOODWARD, Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) Global Change Biology. ,vol. 14, pp. 2015- 2039 ,(2008) , 10.1111/J.1365-2486.2008.01626.X
YING PING WANG, DENNIS BALDOCCHI, RAY LEUNING, EVA FALGE, TIMO VESALA, Estimating parameters in a land‐surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites Global Change Biology. ,vol. 13, pp. 652- 670 ,(2007) , 10.1111/J.1365-2486.2006.01225.X
Karsten Schulz, Andrew Jarvis, Keith Beven, Henrik Soegaard, The Predictive Uncertainty of Land Surface Fluxes in Response to Increasing Ambient Carbon Dioxide Journal of Climate. ,vol. 14, pp. 2551- 2562 ,(2001) , 10.1175/1520-0442(2001)014<2551:TPUOLS>2.0.CO;2
M. R. Raupach, P. J. Rayner, D. J. Barrett, R. S. DeFries, M. Heimann, D. S. Ojima, S. Quegan, C. C. Schmullius, Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications Global Change Biology. ,vol. 11, pp. 378- 397 ,(2005) , 10.1111/J.1365-2486.2005.00917.X