Solutions to the fractional diffusion-wave equation in a wedge

作者: Yuriy Povstenko

DOI: 10.2478/S13540-014-0158-4

关键词:

摘要: The diffusion-wave equation with the Caputo derivative of order 0 < α ≤ 2 is considered in polar coordinates a domain r ∞, φ φ0 under Dirichlet and Neumann boundary conditions. Laplace integral transform respect to time, finite sin- cos-Fourier transforms angular coordinate, Hankel radial coordinate are used. numerical results illustrated graphically.

参考文章(33)
Francesco Mainardi, Rudolf Gorenflo, Fractional Calculus: Integral and Differential Equations of Fractional Order arXiv: Mathematical Physics. ,(2008)
Yasuhiro Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation Osaka Journal of Mathematics. ,vol. 27, pp. 309- 321 ,(1990) , 10.18910/4060
Alberto Carpinteri, Francesco Mainardi, Fractals and fractional calculus in continuum mechanics Springer-Verlag. ,(1997) , 10.1007/978-3-7091-2664-6
Oleg Igorevich Marichev, Stefan G Samko, Anatoly A Kilbas, Fractional Integrals and Derivatives: Theory and Applications ,(1993)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
Y.Z. Povstenko, Fractional radial diffusion in a cylinder Journal of Molecular Liquids. ,vol. 137, pp. 46- 50 ,(2008) , 10.1016/J.MOLLIQ.2007.03.006
W. R. Schneider, W. Wyss, Fractional diffusion and wave equations Journal of Mathematical Physics. ,vol. 30, pp. 134- 144 ,(1989) , 10.1063/1.528578
A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Robert H. Romer, Integrals and Series American Journal of Physics. ,vol. 56, pp. 957- 958 ,(1988) , 10.1119/1.15375