Weak compactness and convergences in L E’ 1 [E]

作者: Houcine Benabdellah , Charles Castaing

DOI: 10.1007/978-4-431-67891-5_1

关键词:

摘要: Suppose that (Ω, ℱ, μ) is a complete probability space, E Banach E’ the topological dual of and ρ lifting in ℒ ∞ (μ). We state several convergences weak compactness results space (L 1 , [E], N 1) weak*-scalarly integrable E’-valued functions via 1,ρ 1,ρ) associated to ρ.) Applications Young measures, Mathematical Economics, Minimization problems Set-valued integration are also presented.

参考文章(44)
A. Ülger, Weak compactness in Proceedings of the American Mathematical Society. ,vol. 113, pp. 143- 149 ,(1991) , 10.1090/S0002-9939-1991-1070533-0
Michel Valdier, A course on Young measures Università degli Studi di Trieste. Dipartimento di Scienze Matematiche. ,(1994)
Alexandre Grothendieck, Espaces vectoriels topologiques Sociedade de Matemática de S. Paulo. ,(1954)
R. Dudley, Convergence of Baire measures Studia Mathematica. ,vol. 27, pp. 251- 268 ,(1966) , 10.4064/SM-27-3-251-268
Michel Valadier, Charles Castaing, Convex analysis and measurable multifunctions ,(1977)
Santiago Díaz, Weak compactness in Proceedings of the American Mathematical Society. ,vol. 124, pp. 2685- 2693 ,(1996) , 10.1090/S0002-9939-96-03336-9
J. R. Retherford, Book Review: Vector measures Bulletin of the American Mathematical Society. ,vol. 84, pp. 681- 686 ,(1978) , 10.1090/S0002-9904-1978-14524-8
G. A. Edgar, Michel Talagrand, Liftings of functions with values in a completely regular space Proceedings of the American Mathematical Society. ,vol. 78, pp. 345- 349 ,(1980) , 10.1090/S0002-9939-1980-0553373-0
T. Shintani, T. Ando, Best approximants in L1 space Probability Theory and Related Fields. ,vol. 33, pp. 33- 39 ,(1975) , 10.1007/BF00539858