V-free products of hopfian lattices

作者: M. E. Adams , J. Sichler

DOI: 10.1007/BF01214938

关键词:

摘要: 2. There exist two hopjian lattices such that their free product isnot hopjian.In Theorem 2 (coproduct, sum) has its usual meaning (see, forinstance, [4]);in 1 we use the definition butall are assumedto be bounded (that is, having a least element 0 and largest 1) allhomomorphisms assumed to {O,l}-homomorphisms homomor­phisms preserving 1).Recall, lattice L (group, ring, so on) is called ifL notisomorphic any properquotient

参考文章(17)
G. Grätzer, A reduced free product of lattices Fundamenta Mathematicae. ,vol. 73, pp. 21- 27 ,(1971) , 10.4064/FM-73-1-21-27
G. Grätzer, H. Lasker, C. Platt, Free products of lattices Fundamenta Mathematicae. ,vol. 69, pp. 233- 240 ,(1970) , 10.4064/FM-69-3-233-240
B. Rotman, On the comparison of order types Acta Mathematica Hungarica. ,vol. 19, pp. 311- 327 ,(1968) , 10.1007/BF01894511
Z. Hedrlín, J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself Algebra Universalis. ,vol. 1, pp. 97- 103 ,(1971) , 10.1007/BF02944963
Rudolf Wille, An example of a finitely generated non-Hopfian lattice Algebra Universalis. ,vol. 5, pp. 101- 103 ,(1975) , 10.1007/BF02485238
P. Hell, Full embeddings into some categories of graphs Algebra Universalis. ,vol. 2, pp. 129- 141 ,(1972) , 10.1007/BF02945020
M. F. Newman, Jiri Sichler, Free products of Hopf groups Mathematische Zeitschrift. ,vol. 135, pp. 69- 72 ,(1973) , 10.1007/BF01214306
J. Sichler, Nonconstant endomorphisms of lattices Proceedings of the American Mathematical Society. ,vol. 34, pp. 67- 70 ,(1972) , 10.1090/S0002-9939-1972-0291032-8
B. Jónsson, Relatively free products of lattices Algebra Universalis. ,vol. 1, pp. 362- 373 ,(1971) , 10.1007/BF02944995
Trevor Evans, Finitely Presented Loops, Lattices, etc. are Hopfian Journal of the London Mathematical Society. ,vol. s1-44, pp. 551- 552 ,(1969) , 10.1112/JLMS/S1-44.1.551