Multistep estimation of regression coefficients in a linear model with censored survival data

作者: Hira L. Koul , V. Susarla , John Van Ryzin

DOI: 10.1214/LNMS/1215464842

关键词:

摘要: This paper introduces a multi-step procedure for estimating the regression coefficients in linear model when dependent variable of interest is randomly right censored transform survival, i.e., log lifetime. The closely related to that introduced by Buckley and James (1979). Using large sample properties developed authors (1981a), asymptotic consistency normality are seen hold each iterate original estimator. A limited simulation study examines small behavior procedure.

参考文章(5)
RUPERT G. MILLER, Least squares regression with censored data Biometrika. ,vol. 63, pp. 449- 464 ,(1976) , 10.1093/BIOMET/63.3.449
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
Antonia Foldes, Lidia Rejto, STRONG UNIFORM CONSISTENCY FOR NONPARAMETRIC SURVIVAL CURVE ESTIMATORS FROM RANDOMLY CENSORED DATA Annals of Statistics. ,vol. 9, pp. 122- 129 ,(1981) , 10.1214/AOS/1176345337
JONATHAN BUCKLEY, IAN JAMES, Linear regression with censored data Biometrika. ,vol. 66, pp. 429- 436 ,(1979) , 10.1093/BIOMET/66.3.429
Rupert G. Miller, Survival Analysis ,(1981)