Covariance-controlled adaptive Langevin thermostat for large-scale Bayesian sampling

作者: Amos J. Storkey , Xiaocheng Shang , Zhanxing Zhu , Benedict Leimkuhler

DOI:

关键词:

摘要: Monte Carlo sampling for Bayesian posterior inference is a common approach used in machine learning. The Markov chain procedures that are often discrete-time analogues of associated stochastic differential equations (SDEs). These SDEs guaranteed to leave invariant the required distribution. An area current research addresses computational benefits gradient methods this setting. Existing techniques rely on estimating variance or covariance subsampling error, and typically assume constant variance. In article, we propose covariance-controlled adaptive Langevin thermostat can effectively dissipate parameter-dependent noise while maintaining desired target proposed method achieves substantial speedup over popular alternative schemes large-scale learning applications.

参考文章(23)
George Casella, Christian P. Robert, Monte Carlo Statistical Methods (Springer Texts in Statistics) Springer-Verlag New York, Inc.. ,(2005)
William G. Hoover, Computational statistical mechanics ,(2012)
Hugo Larochelle, Yoshua Bengio, Classification using discriminative restricted Boltzmann machines Proceedings of the 25th international conference on Machine learning - ICML '08. pp. 536- 543 ,(2008) , 10.1145/1390156.1390224
Assyr Abdulle, Gilles Vilmart, Konstantinos C. Zygalakis, Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics SIAM Journal on Numerical Analysis. ,vol. 53, pp. 1- 16 ,(2015) , 10.1137/140962644
Andrew Jones, Ben Leimkuhler, Adaptive stochastic methods for sampling driven molecular systems Journal of Chemical Physics. ,vol. 135, pp. 084125- 084125 ,(2011) , 10.1063/1.3626941
Herbert Robbins, Sutton Monro, A Stochastic Approximation Method Annals of Mathematical Statistics. ,vol. 22, pp. 400- 407 ,(1951) , 10.1214/AOMS/1177729586
Benedict Leimkuhler, Charles Matthews, Gabriel Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics Ima Journal of Numerical Analysis. ,vol. 36, pp. 13- 79 ,(2015) , 10.1093/IMANUM/DRU056
D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications Computational sciences series. ,vol. 1, pp. 1- 638 ,(2002)