Small isospectral and nonisometric orbifolds of dimension 2 and 3

作者: Benjamin Linowitz , John Voight

DOI: 10.1007/S00209-015-1500-1

关键词:

摘要: Revisiting a construction due to Vigneras, we exhibit small pairs of orbifolds and manifolds dimension 2 3 arising from arithmetic Fuchsian Kleinian groups that are Laplace isospectral (in fact, representation equivalent) but nonisometric.

参考文章(97)
Kisao Takeuchi, Commensurability classes of arithmetic triangle groups : Dedicated to Professor Y. Kawada on his 60th birthday Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. ,vol. 24, pp. 201- 212 ,(1977)
A. R. Richardson, C. Chevalley, L'arithmetique dans les algebres de matrices The Mathematical Gazette. ,vol. 20, pp. 293- ,(1936) , 10.2307/3607800
Pierre Deligne, Travaux de Shimura Lecture Notes in Mathematics. ,vol. 13, pp. 123- 165 ,(1971) , 10.1007/BFB0058700
Henri Cohen, Francisco Diaz y Diaz, Michel Olivier, A Table of Totally Complex Number Fields of Small Discriminants algorithmic number theory symposium. pp. 381- 391 ,(1998) , 10.1007/BFB0054877
Francis Yein Chei Fung, John Horton Conway, The sensual (quadratic) form ,(1997)