New exact relations for steady irrotational two-dimensional gravity and capillary surface waves

作者: Didier Clamond

DOI: 10.1098/RSTA.2017.0220

关键词:

摘要: Steady two-dimensional surface capillary-gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties physical plane and introducing some transformations of boundary conditions at free surface, new exact relations equations for only derived. In particular, a counterpart Babenko equation is obtained.

参考文章(37)
An Exact Integral Equation for Solitary Waves (with New Numerical Results for Some 'Internal' Properties) Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 452, pp. 373- 390 ,(1996) , 10.1098/RSPA.1996.0020
B. Buffoni, E. N. Dancer, J. F. Toland, The Regularity and Local Bifurcation of¶Steady Periodic Water Waves Archive for Rational Mechanics and Analysis. ,vol. 152, pp. 207- 240 ,(2000) , 10.1007/S002050000086
Adrian Constantin, Mean Velocities in a Stokes Wave Archive for Rational Mechanics and Analysis. ,vol. 207, pp. 907- 917 ,(2013) , 10.1007/S00205-012-0584-6
W. M. Drennan, W. H. Hui, G. Tenti, Accurate calculations of Stokes water waves of large amplitude Zeitschrift für Angewandte Mathematik und Physik. ,vol. 43, pp. 367- 384 ,(1992) , 10.1007/BF00946637
Adrian Constantin, The trajectories of particles in Stokes waves Inventiones Mathematicae. ,vol. 166, pp. 523- 535 ,(2006) , 10.1007/S00222-006-0002-5
DIDIER CLAMOND, Steady finite-amplitude waves on a horizontal seabed of arbitrary depth Journal of Fluid Mechanics. ,vol. 398, pp. 45- 60 ,(1999) , 10.1017/S0022112099006151
R.C.T. Rainey, Michael S. Longuet-Higgins, A close one-term approximation to the highest Stokes wave on deep water Ocean Engineering. ,vol. 33, pp. 2012- 2024 ,(2006) , 10.1016/J.OCEANENG.2005.09.014
J. F. Toland, Steady Periodic Hydroelastic Waves Archive for Rational Mechanics and Analysis. ,vol. 189, pp. 325- 362 ,(2008) , 10.1007/S00205-007-0104-2
Alex D.D. Craik, THE ORIGINS OF WATER WAVE THEORY Annual Review of Fluid Mechanics. ,vol. 36, pp. 1- 28 ,(2004) , 10.1146/ANNUREV.FLUID.36.050802.122118