Geometry of the Universe and Its Relation to Entropy and Information

作者: Ioannis Haranas , Ioannis Gkigkitzis

DOI: 10.1155/2013/809695

关键词:

摘要: In an effort to investigate a possible relation between geometry and information, we establish of the Ricci scalar in Robertson-Walker metric cosmological Friedmann model number information entropy . This is with help previously derived result that relates Hubble parameter We find has dependence which inversely proportional Similarly, nonzero would imply finite scalar, therefore space time will unfold. Finally, using maximum existing universe, obtain numerical value for be

参考文章(11)
J. N. Islam, An Introduction to Mathematical Cosmology internet measurement conference. ,(2001) , 10.1017/CBO9780511613166
Jacob D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems Physical Review D. ,vol. 23, pp. 287- 298 ,(1981) , 10.1103/PHYSREVD.23.287
Rolf Landauer, Dissipation and noise immunity in computation and communication Nature. ,vol. 335, pp. 779- 784 ,(1988) , 10.1038/335779A0
Glenn D. Starkman, Lawrence M. Krauss, Life, the Universe, and Nothing: Life and Death in an Ever-expanding Universe The Astrophysical Journal. ,vol. 531, pp. 22- 30 ,(2000) , 10.1086/308434
A. Alfonso-Faus, M. J. Fullana i Alfonso, Cosmic Background Bose Condensation (CBBC) Astrophysics and Space Science. ,vol. 347, pp. 193- 196 ,(2013) , 10.1007/S10509-013-1500-8
Ioannis Haranas, Ioannis Gkigkitzis, The number of information bits related to the minimum quantum and gravitational masses in a vacuum dominated universe Astrophysics and Space Science. ,vol. 346, pp. 213- 218 ,(2013) , 10.1007/S10509-013-1434-1
Kees Dullemond, Kasper Peeters, Introduction to Tensor Calculus ,(2010)